Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,6 @@ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
26 |
|
27 |
DESCRIPTION = """
|
28 |
# Gen Vision 🎃
|
29 |
-
Separate Tabs for Chat, Image Generation (LoRA), Qwen2 VL OCR and Text-to-Speech
|
30 |
"""
|
31 |
|
32 |
css = '''
|
@@ -73,7 +72,7 @@ def progress_bar_html(label: str) -> str:
|
|
73 |
'''
|
74 |
|
75 |
# -----------------------
|
76 |
-
# Text Generation Setup
|
77 |
# -----------------------
|
78 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
79 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
@@ -84,23 +83,28 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
84 |
)
|
85 |
model.eval()
|
86 |
|
87 |
-
# -----------------------
|
88 |
-
# TTS Setup
|
89 |
-
# -----------------------
|
90 |
TTS_VOICES = [
|
91 |
-
"en-US-JennyNeural",
|
92 |
-
"en-US-GuyNeural",
|
93 |
]
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
96 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
97 |
communicate = edge_tts.Communicate(text, voice)
|
98 |
await communicate.save(output_file)
|
99 |
return output_file
|
100 |
|
101 |
-
# -----------------------
|
102 |
-
# Utility: Clean Chat History
|
103 |
-
# -----------------------
|
104 |
def clean_chat_history(chat_history):
|
105 |
"""
|
106 |
Filter out any chat entries whose "content" is not a string.
|
@@ -112,19 +116,9 @@ def clean_chat_history(chat_history):
|
|
112 |
return cleaned
|
113 |
|
114 |
# -----------------------
|
115 |
-
#
|
116 |
# -----------------------
|
117 |
-
OCR_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
|
118 |
-
processor = AutoProcessor.from_pretrained(OCR_MODEL_ID, trust_remote_code=True)
|
119 |
-
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
120 |
-
OCR_MODEL_ID,
|
121 |
-
trust_remote_code=True,
|
122 |
-
torch_dtype=torch.float16
|
123 |
-
).to("cuda").eval()
|
124 |
|
125 |
-
# -----------------------
|
126 |
-
# Stable Diffusion Image Generation Setup (LoRA)
|
127 |
-
# -----------------------
|
128 |
MAX_SEED = np.iinfo(np.int32).max
|
129 |
USE_TORCH_COMPILE = False
|
130 |
ENABLE_CPU_OFFLOAD = False
|
@@ -177,7 +171,17 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
177 |
return seed
|
178 |
|
179 |
@spaces.GPU(duration=180, enable_queue=True)
|
180 |
-
def generate_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
182 |
effective_negative_prompt = negative_prompt # Use provided negative prompt if any
|
183 |
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
|
@@ -198,51 +202,78 @@ def generate_image(prompt: str, negative_prompt: str, seed: int, width: int, hei
|
|
198 |
return image_paths, seed
|
199 |
|
200 |
# -----------------------
|
201 |
-
# Chat
|
202 |
-
# -----------------------
|
203 |
-
def generate_chat(input_text: str, chat_history: list, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
|
204 |
-
conversation = clean_chat_history(chat_history)
|
205 |
-
conversation.append({"role": "user", "content": input_text})
|
206 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
207 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
208 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
209 |
-
input_ids = input_ids.to(model.device)
|
210 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
211 |
-
generation_kwargs = {
|
212 |
-
"input_ids": input_ids,
|
213 |
-
"streamer": streamer,
|
214 |
-
"max_new_tokens": max_new_tokens,
|
215 |
-
"do_sample": True,
|
216 |
-
"top_p": top_p,
|
217 |
-
"top_k": top_k,
|
218 |
-
"temperature": temperature,
|
219 |
-
"num_beams": 1,
|
220 |
-
"repetition_penalty": repetition_penalty,
|
221 |
-
}
|
222 |
-
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
223 |
-
t.start()
|
224 |
-
outputs = []
|
225 |
-
for new_text in streamer:
|
226 |
-
outputs.append(new_text)
|
227 |
-
final_response = "".join(outputs)
|
228 |
-
chat_history.append({"role": "assistant", "content": final_response})
|
229 |
-
return chat_history
|
230 |
-
|
231 |
-
# -----------------------
|
232 |
-
# Qwen2 VL OCR Function (Multimodal)
|
233 |
# -----------------------
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
if files:
|
236 |
-
if
|
237 |
images = [load_image(image) for image in files]
|
238 |
-
elif
|
239 |
images = [load_image(files[0])]
|
240 |
else:
|
241 |
-
images = [
|
242 |
messages = [{
|
243 |
"role": "user",
|
244 |
-
"content": [
|
245 |
-
|
|
|
|
|
246 |
}]
|
247 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
248 |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
@@ -250,84 +281,88 @@ def generate_ocr(text: str, files, max_new_tokens: int):
|
|
250 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
251 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
252 |
thread.start()
|
|
|
253 |
buffer = ""
|
|
|
254 |
for new_text in streamer:
|
255 |
buffer += new_text
|
256 |
-
|
|
|
|
|
257 |
else:
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
# -----------------------
|
268 |
-
# Gradio Interface
|
269 |
# -----------------------
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
with
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
)
|
309 |
-
|
310 |
-
with gr.Tab("Qwen 2 VL OCR"):
|
311 |
-
ocr_text = gr.Textbox(label="Text Prompt", placeholder="Enter prompt for OCR")
|
312 |
-
file_input = gr.File(label="Upload Images", file_count="multiple")
|
313 |
-
ocr_max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
314 |
-
ocr_btn = gr.Button("Run OCR")
|
315 |
-
ocr_output = gr.Textbox(label="OCR Output")
|
316 |
-
ocr_btn.click(
|
317 |
-
fn=generate_ocr,
|
318 |
-
inputs=[ocr_text, file_input, ocr_max_new_tokens],
|
319 |
-
outputs=ocr_output,
|
320 |
-
)
|
321 |
-
|
322 |
-
with gr.Tab("Text-to-Speech"):
|
323 |
-
tts_text = gr.Textbox(label="Text", placeholder="Enter text for TTS")
|
324 |
-
voice_dropdown = gr.Dropdown(label="Voice", choices=TTS_VOICES, value=TTS_VOICES[0])
|
325 |
-
tts_btn = gr.Button("Generate Audio")
|
326 |
-
tts_audio = gr.Audio(label="Audio Output", type="filepath")
|
327 |
-
tts_btn.click(
|
328 |
-
fn=generate_tts,
|
329 |
-
inputs=[tts_text, voice_dropdown],
|
330 |
-
outputs=tts_audio,
|
331 |
-
)
|
332 |
|
333 |
-
|
|
|
|
26 |
|
27 |
DESCRIPTION = """
|
28 |
# Gen Vision 🎃
|
|
|
29 |
"""
|
30 |
|
31 |
css = '''
|
|
|
72 |
'''
|
73 |
|
74 |
# -----------------------
|
75 |
+
# Text Generation Setup
|
76 |
# -----------------------
|
77 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
78 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
83 |
)
|
84 |
model.eval()
|
85 |
|
|
|
|
|
|
|
86 |
TTS_VOICES = [
|
87 |
+
"en-US-JennyNeural", # @tts1
|
88 |
+
"en-US-GuyNeural", # @tts2
|
89 |
]
|
90 |
|
91 |
+
# -----------------------
|
92 |
+
# Multimodal OCR Setup
|
93 |
+
# -----------------------
|
94 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
|
95 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
96 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
97 |
+
MODEL_ID,
|
98 |
+
trust_remote_code=True,
|
99 |
+
torch_dtype=torch.float16
|
100 |
+
).to("cuda").eval()
|
101 |
+
|
102 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
103 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
104 |
communicate = edge_tts.Communicate(text, voice)
|
105 |
await communicate.save(output_file)
|
106 |
return output_file
|
107 |
|
|
|
|
|
|
|
108 |
def clean_chat_history(chat_history):
|
109 |
"""
|
110 |
Filter out any chat entries whose "content" is not a string.
|
|
|
116 |
return cleaned
|
117 |
|
118 |
# -----------------------
|
119 |
+
# Stable Diffusion Image Generation Setup
|
120 |
# -----------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
|
|
|
|
|
|
122 |
MAX_SEED = np.iinfo(np.int32).max
|
123 |
USE_TORCH_COMPILE = False
|
124 |
ENABLE_CPU_OFFLOAD = False
|
|
|
171 |
return seed
|
172 |
|
173 |
@spaces.GPU(duration=180, enable_queue=True)
|
174 |
+
def generate_image(
|
175 |
+
prompt: str,
|
176 |
+
negative_prompt: str = "",
|
177 |
+
seed: int = 0,
|
178 |
+
width: int = 1024,
|
179 |
+
height: int = 1024,
|
180 |
+
guidance_scale: float = 3.0,
|
181 |
+
randomize_seed: bool = True,
|
182 |
+
lora_model: str = "Realism",
|
183 |
+
progress=gr.Progress(track_tqdm=True),
|
184 |
+
):
|
185 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
186 |
effective_negative_prompt = negative_prompt # Use provided negative prompt if any
|
187 |
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
|
|
|
202 |
return image_paths, seed
|
203 |
|
204 |
# -----------------------
|
205 |
+
# Main Chat/Generation Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
# -----------------------
|
207 |
+
@spaces.GPU
|
208 |
+
def generate(
|
209 |
+
input_dict: dict,
|
210 |
+
chat_history: list[dict],
|
211 |
+
max_new_tokens: int = 1024,
|
212 |
+
temperature: float = 0.6,
|
213 |
+
top_p: float = 0.9,
|
214 |
+
top_k: int = 50,
|
215 |
+
repetition_penalty: float = 1.2,
|
216 |
+
):
|
217 |
+
"""
|
218 |
+
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
219 |
+
Special commands:
|
220 |
+
- "@tts1" or "@tts2": triggers text-to-speech.
|
221 |
+
- "@<lora_command>": triggers image generation using the new LoRA pipeline.
|
222 |
+
Available commands (case-insensitive): @realism, @pixar, @photoshoot, @clothing, @interior, @fashion,
|
223 |
+
@minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic.
|
224 |
+
"""
|
225 |
+
text = input_dict["text"]
|
226 |
+
files = input_dict.get("files", [])
|
227 |
+
|
228 |
+
# Check for image generation command based on LoRA tags.
|
229 |
+
lora_mapping = { key.lower(): key for key in LORA_OPTIONS }
|
230 |
+
for key_lower, key in lora_mapping.items():
|
231 |
+
command_tag = "@" + key_lower
|
232 |
+
if text.strip().lower().startswith(command_tag):
|
233 |
+
prompt_text = text.strip()[len(command_tag):].strip()
|
234 |
+
yield progress_bar_html(f"Processing Image Generation ({key} style)")
|
235 |
+
image_paths, used_seed = generate_image(
|
236 |
+
prompt=prompt_text,
|
237 |
+
negative_prompt="",
|
238 |
+
seed=1,
|
239 |
+
width=1024,
|
240 |
+
height=1024,
|
241 |
+
guidance_scale=3,
|
242 |
+
randomize_seed=True,
|
243 |
+
lora_model=key,
|
244 |
+
)
|
245 |
+
yield progress_bar_html("Finalizing Image Generation")
|
246 |
+
yield gr.Image(image_paths[0])
|
247 |
+
return
|
248 |
+
|
249 |
+
# Check for TTS command (@tts1 or @tts2)
|
250 |
+
tts_prefix = "@tts"
|
251 |
+
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
252 |
+
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
253 |
+
|
254 |
+
if is_tts and voice_index:
|
255 |
+
voice = TTS_VOICES[voice_index - 1]
|
256 |
+
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
257 |
+
conversation = [{"role": "user", "content": text}]
|
258 |
+
else:
|
259 |
+
voice = None
|
260 |
+
text = text.replace(tts_prefix, "").strip()
|
261 |
+
conversation = clean_chat_history(chat_history)
|
262 |
+
conversation.append({"role": "user", "content": text})
|
263 |
+
|
264 |
if files:
|
265 |
+
if len(files) > 1:
|
266 |
images = [load_image(image) for image in files]
|
267 |
+
elif len(files) == 1:
|
268 |
images = [load_image(files[0])]
|
269 |
else:
|
270 |
+
images = []
|
271 |
messages = [{
|
272 |
"role": "user",
|
273 |
+
"content": [
|
274 |
+
*[{"type": "image", "image": image} for image in images],
|
275 |
+
{"type": "text", "text": text},
|
276 |
+
]
|
277 |
}]
|
278 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
279 |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
|
|
281 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
282 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
283 |
thread.start()
|
284 |
+
|
285 |
buffer = ""
|
286 |
+
yield progress_bar_html("Processing with Qwen2VL Ocr")
|
287 |
for new_text in streamer:
|
288 |
buffer += new_text
|
289 |
+
buffer = buffer.replace("<|im_end|>", "")
|
290 |
+
time.sleep(0.01)
|
291 |
+
yield buffer
|
292 |
else:
|
293 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
294 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
295 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
296 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
297 |
+
input_ids = input_ids.to(model.device)
|
298 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
299 |
+
generation_kwargs = {
|
300 |
+
"input_ids": input_ids,
|
301 |
+
"streamer": streamer,
|
302 |
+
"max_new_tokens": max_new_tokens,
|
303 |
+
"do_sample": True,
|
304 |
+
"top_p": top_p,
|
305 |
+
"top_k": top_k,
|
306 |
+
"temperature": temperature,
|
307 |
+
"num_beams": 1,
|
308 |
+
"repetition_penalty": repetition_penalty,
|
309 |
+
}
|
310 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
311 |
+
t.start()
|
312 |
|
313 |
+
outputs = []
|
314 |
+
for new_text in streamer:
|
315 |
+
outputs.append(new_text)
|
316 |
+
yield "".join(outputs)
|
317 |
+
|
318 |
+
final_response = "".join(outputs)
|
319 |
+
yield final_response
|
320 |
+
|
321 |
+
if is_tts and voice:
|
322 |
+
output_file = asyncio.run(text_to_speech(final_response, voice))
|
323 |
+
yield gr.Audio(output_file, autoplay=True)
|
324 |
|
325 |
# -----------------------
|
326 |
+
# Gradio Chat Interface
|
327 |
# -----------------------
|
328 |
+
demo = gr.ChatInterface(
|
329 |
+
fn=generate,
|
330 |
+
additional_inputs=[
|
331 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
332 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
333 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
334 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
335 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
336 |
+
],
|
337 |
+
examples=[
|
338 |
+
['@realism Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic'],
|
339 |
+
["@pixar A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"],
|
340 |
+
["@realism A futuristic cityscape with neon lights"],
|
341 |
+
["@photoshoot A portrait of a person with dramatic lighting"],
|
342 |
+
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
343 |
+
["Python Program for Array Rotation"],
|
344 |
+
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
345 |
+
["@clothing Fashionable streetwear in an urban environment"],
|
346 |
+
["@interior A modern living room interior with minimalist design"],
|
347 |
+
["@fashion A runway model in haute couture"],
|
348 |
+
["@minimalistic A simple and elegant design of a serene landscape"],
|
349 |
+
["@modern A contemporary art piece with abstract geometric shapes"],
|
350 |
+
["@animaliea A cute animal portrait with vibrant colors"],
|
351 |
+
["@wallpaper A scenic mountain range perfect for a desktop wallpaper"],
|
352 |
+
["@cars A sleek sports car cruising on a city street"],
|
353 |
+
["@pencilart A detailed pencil sketch of a historic building"],
|
354 |
+
["@artminimalistic An artistic minimalist composition with subtle tones"],
|
355 |
+
["@tts2 What causes rainbows to form?"],
|
356 |
+
],
|
357 |
+
cache_examples=False,
|
358 |
+
type="messages",
|
359 |
+
description=DESCRIPTION,
|
360 |
+
css=css,
|
361 |
+
fill_height=True,
|
362 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="default [text, vision] , scroll down examples to explore more art styles"),
|
363 |
+
stop_btn="Stop Generation",
|
364 |
+
multimodal=True,
|
365 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
+
if __name__ == "__main__":
|
368 |
+
demo.queue(max_size=20).launch(share=True)
|