import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
import copy
import random
import time
import re
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model for SDXL
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
# Load SDXL pipelines
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model,
torch_dtype=dtype,
use_safetensors=True
).to(device)
pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_pretrained(
base_model,
torch_dtype=dtype,
use_safetensors=True
).to(device)
MAX_SEED = 2**32 - 1
# Custom SDXL generation function for live preview
@torch.inference_mode()
def generate_sdxl_images(
pipe,
prompt: str,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
generator: Optional[torch.Generator] = None,
output_type: str = "pil",
):
# Encode prompt
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt=prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
)
# Prepare latents
latents = pipe.prepare_latents(
batch_size=1,
num_channels_latents=pipe.unet.config.in_channels,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=pipe.device,
generator=generator,
)
# Prepare timesteps
pipe.scheduler.set_timesteps(num_inference_steps, device=pipe.device)
timesteps = pipe.scheduler.timesteps
# Prepare guidance
do_classifier_free_guidance = guidance_scale > 1.0
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
# Denoising loop
for i, t in enumerate(timesteps):
# Expand latents for guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# Predict noise
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
added_cond_kwargs={"text_embeds": pooled_prompt_embeds},
).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Step scheduler
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
# Decode latents to image every step
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
yield pipe.image_processor.postprocess(image, output_type=output_type)[0]
# Final image
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
yield pipe.image_processor.postprocess(image, output_type=output_type)[0]
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
for img in generate_sdxl_images(
pipe,
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
output_type="pil",
):
yield img
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe_i2i.to("cuda")
image_input = load_image(image_input_path)
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
output_type="pil",
).images[0]
return final_image
@spaces.GPU(duration=70)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if trigger_word:
if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = prompt
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
# Load LoRA weights and set adapter scale
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
weight_name = selected_lora.get("weights", None)
adapter_name = "lora"
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=adapter_name)
pipe.set_adapters([adapter_name], [lora_scale])
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=adapter_name)
pipe_i2i.set_adapters([adapter_name], [lora_scale])
# Set random seed
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image_input is not None:
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
yield final_image, seed, gr.update(visible=False)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'
'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield final_image, seed, gr.update(value=progress_bar, visible=False)
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) != 2:
raise Exception("Invalid Hugging Face repository link format.")
# Load model card
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
# Validate model type for SDXL
if base_model != "stabilityai/stable-diffusion-xl-base-1.0":
raise Exception("Not an SDXL LoRA!")
# Extract image and trigger word
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
# Initialize Hugging Face file system
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
safetensors_name = None
highest_trained_file = None
highest_steps = -1
last_safetensors_file = None
step_pattern = re.compile(r"_0{3,}\d+") # Detects step count `_000...`
for file in list_of_files:
filename = file.split("/")[-1]
if filename.endswith(".safetensors"):
last_safetensors_file = filename
match = step_pattern.search(filename)
if not match:
safetensors_name = filename
break
else:
steps = int(match.group().lstrip("_"))
if steps > highest_steps:
highest_trained_file = filename
highest_steps = steps
if not image_url and filename.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_url = f"https://huggingface.co/{link}/resolve/main/{filename}"
if not safetensors_name:
safetensors_name = highest_trained_file if highest_trained_file else last_safetensors_file
if not safetensors_name:
raise Exception("No valid *.safetensors file found in the repository.")
except Exception as e:
print(e)
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
Loaded custom LoRA:
{title}
{"Using: "+trigger_word+"
as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if not existing_item_index:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-SDXL LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
title = gr.HTML(
"""SDXL LoRA DLC
""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/sdxl-lora-model")
gr.Markdown("[Check the list of SDXL LoRAs](https://huggingface.co/models?other=base_model:stabilityai/stable-diffusion-xl-base-1.0)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=30)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=1.0)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed, progress_bar]
)
app.queue()
app.launch()