import os import random import uuid from typing import Tuple import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler title = """
β οΈRunning on CPU, This may not work on CPU. If it runs for an extended time or if you encounter errors, try running it on a GPU by duplicating the space using @spaces.GPU(). +import spaces.π
" # Optionally, you could add a placeholder or disable functionality here else: USE_TORCH_COMPILE = False # Set to False as 0 is not standard boolean ENABLE_CPU_OFFLOAD = False # Set to False as 0 is not standard boolean # Moved pipe initialization inside the CUDA check pipe = StableDiffusionXLPipeline.from_pretrained( "SG161222/RealVisXL_V4.0_Lightning", # [or] SG161222/RealVisXL_V5.0_Lightning torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) LORA_OPTIONS = { "Realism (face/character)π¦π»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"), "Pixar (art/toons)π": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"), "Photoshoot (camera/film)πΈ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"), "Clothing (hoodies/pant/shirts)π": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"), "Interior Architecture (house/hotel)π ": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1Ξ΄.safetensors", "arch"), "Fashion Product (wearing/usable)π": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"), "Minimalistic Image (minimal/detailed)ποΈ": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"), "Modern Clothing (trend/new)π": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"), "Animaliea (farm/wild)π«": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"), "Liquid Wallpaper (minimal/illustration)πΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"), "Canes Cars (realistic/futurecars)π": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"), "Pencil Art (characteristic/creative)βοΈ": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"), "Art Minimalistic (paint/semireal)π¨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"), } # Load LoRAs only if pipe is initialized if pipe: for model_name, weight_name, adapter_name in LORA_OPTIONS.values(): try: pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name) print(f"Loaded LoRA: {adapter_name}") except Exception as e: print(f"Warning: Could not load LoRA {adapter_name} from {model_name}. Error: {e}") pipe.to("cuda") print("Pipeline and LoRAs loaded to CUDA.") else: print("Pipeline not initialized (likely no CUDA available).") style_list = [ { "name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "Style Zero", "prompt": "{prompt}", "negative_prompt": "", }, ] styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} DEFAULT_STYLE_NAME = "3840 x 2160" STYLE_NAMES = list(styles.keys()) def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) # Use .get for safety if not negative: negative = "" return p.replace("{prompt}", positive), n + " " + negative # Add space for clarity @spaces.GPU(duration=180, enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, style_name: str = DEFAULT_STYLE_NAME, lora_model: str = "Realism (face/character)π¦π»", progress=gr.Progress(track_tqdm=True), ): if pipe is None: raise gr.Error("Pipeline not initialized. Check if CUDA is available and drivers are installed.") seed = int(randomize_seed_fn(seed, randomize_seed)) # Apply style first positive_prompt, base_negative_prompt = apply_style(style_name, prompt, negative_prompt if use_negative_prompt else "") # If user explicitly provided a negative prompt and wants to use it, append it # (apply_style already incorporates the style's negative prompt) # This logic might need adjustment depending on desired behavior: replace or append? # Current: Style neg prompt + user neg prompt effective_negative_prompt = base_negative_prompt if use_negative_prompt and negative_prompt: # Check if the negative prompt from apply_style is already there to avoid duplication if not negative_prompt in effective_negative_prompt: effective_negative_prompt = (effective_negative_prompt + " " + negative_prompt).strip() # Ensure LoRA selection is valid if lora_model not in LORA_OPTIONS: print(f"Warning: Invalid LoRA selection '{lora_model}'. Using default or first available.") # Fallback logic could be added here, e.g., use the first key lora_model = next(iter(LORA_OPTIONS)) # Get the first key as a fallback model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model] try: print(f"Setting adapter: {adapter_name}") pipe.set_adapters(adapter_name) # Optional: Add LoRA scale if needed, often done via cross_attention_kwargs # Example: cross_attention_kwargs={"scale": lora_scale} # Note: RealVisXL Lightning might not need explicit scale adjustments like older models. # Using 0.65 as hardcoded before. Keeping it. lora_scale = 0.65 print(f"Generating with prompt: '{positive_prompt}'") print(f"Negative prompt: '{effective_negative_prompt}'") print(f"Seed: {seed}, W: {width}, H: {height}, Scale: {guidance_scale}, Steps: 20") images = pipe( prompt=positive_prompt, negative_prompt=effective_negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=20, # Lightning models use fewer steps num_images_per_prompt=1, generator=torch.Generator("cuda").manual_seed(seed), # Ensure reproducibility cross_attention_kwargs={"scale": lora_scale}, # Apply LoRA scale if needed output_type="pil", ).images image_paths = [save_image(img) for img in images] print(f"Generated {len(image_paths)} image(s).") return image_paths, seed except Exception as e: print(f"Error during generation: {e}") # Raise a Gradio error to display it in the UI import traceback traceback.print_exc() raise gr.Error(f"Generation failed: {e}") examples = [ ["Realism: Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational"], ["Pixar: A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"], ["Hoodie: Front view, capture a urban style, Superman Hoodie, technical materials, fabric small point label on text Blue theory, the design is minimal, with a raised collar, fabric is a Light yellow, low angle to capture the Hoodies form and detailing, f/5.6 to focus on the hoodies craftsmanship, solid grey background, studio light setting, with batman logo in the chest region of the t-shirt"], ] css = ''' .gradio-container{max-width: 680px !important; margin: auto;} h1{text-align:center} #gallery { min-height: 400px; } footer { display: none !important; visibility: hidden !important; } ''' def load_predefined_images(): predefined_images = [] asset_dir = "assets" if os.path.exists(asset_dir): valid_extensions = {".png", ".jpg", ".jpeg", ".webp"} try: for i in range(1, 10): # Try loading 1.png to 9.png for ext in valid_extensions: img_path = os.path.join(asset_dir, f"{i}{ext}") if os.path.exists(img_path): predefined_images.append(img_path) break # Found image for this number, move to next except Exception as e: print(f"Error loading predefined images: {e}") if not predefined_images: print("No predefined images found in assets folder (e.g., assets/1.png, assets/2.jpg).") return predefined_images # --- Gradio UI Definition --- with gr.Blocks(css=css, theme="Yntec/HaleyCH_Theme_craiyon_alt") as demo: gr.HTML(title) # Define the output gallery component first result_gallery = gr.Gallery( label="Generated Images", show_label=False, elem_id="gallery", # For CSS styling columns=1, # Adjust as needed height="auto" ) # Define the output seed component output_seed = gr.State(value=0) # Use gr.State for non-displayed outputs or values needing persistence with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt here...", container=False, scale=7 # Give more space to prompt ) run_button = gr.Button("Generate", scale=1, variant="primary") with gr.Row(): model_choice = gr.Dropdown( label="LoRA Selection", choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)π¦π»", # Default selection scale=3 ) style_selection = gr.Radio( show_label=False, # Label provided by Row context or Accordion container=True, interactive=True, choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style", scale=2 ) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use Negative Prompt", value=True, scale=1) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True, scale=1) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, # Initial value visible=True, # Controlled by randomize_seed logic later if needed scale=3 ) negative_prompt = gr.Textbox( label="Negative Prompt", lines=2, max_lines=4, value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", placeholder="Enter things to avoid...", visible=True, # Controlled by use_negative_prompt checkbox ) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=1536, # Adjusted max for typical SDXL usage step=64, # Step by 64 for common resolutions value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=1536, # Adjusted max step=64, # Step by 64 value=1024, ) guidance_scale = gr.Slider( label="Guidance Scale (CFG)", minimum=1.0, # Usually start CFG from 1 maximum=10.0, # Lightning models often use low CFG step=0.1, value=3.0, ) # --- Event Listeners --- # Toggle negative prompt visibility use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) # Toggle seed slider visibility based on randomize checkbox # def toggle_seed_visibility(randomize): # return gr.update(interactive=not randomize) # randomize_seed.change( # fn=toggle_seed_visibility, # inputs=randomize_seed, # outputs=seed, # api_name=False # ) # --- Image Generation Trigger --- inputs = [ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed, style_selection, model_choice, ] # Define outputs using the created components outputs = [ result_gallery, # The gallery to display images output_seed # The state to hold the used seed ] # Connect the generate function to the button click and prompt submit gr.on( triggers=[run_button.click, prompt.submit], fn=generate, inputs=inputs, outputs=outputs, api_name="run" # Keep API name if needed ) # Update the seed slider display when a new seed is generated and returned via output_seed output_seed.change(fn=lambda x: x, inputs=output_seed, outputs=seed, api_name=False) # --- Examples --- gr.Examples( examples=examples, inputs=[prompt], # Only prompt needed for examples outputs=[result_gallery, output_seed], # Update example outputs as well fn=generate, # Function to run when example is clicked cache_examples=os.getenv("CACHE_EXAMPLES", "False").lower() == "true" # Cache examples in Spaces ) # --- Predefined Image Gallery (Static) --- with gr.Column(): # Use column for better layout control if needed gr.Markdown("### Example Gallery (Predefined)") try: predefined_gallery_images = load_predefined_images() if predefined_gallery_images: predefined_gallery = gr.Gallery( label="Predefined Images", value=predefined_gallery_images, columns=3, show_label=False ) else: gr.Markdown("_(No predefined images found in 'assets' folder)_") except Exception as e: gr.Markdown(f"_Error loading predefined gallery: {e}_") # --- Launch the App --- if __name__ == "__main__": demo.queue(max_size=20).launch(ssr_mode=True, debug=True) # Add debug=True for more detailed logs