prithivMLmods commited on
Commit
b82683f
·
verified ·
1 Parent(s): b75a5d9

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -257
app.py DELETED
@@ -1,257 +0,0 @@
1
- import spaces
2
- import json
3
- import math
4
- import os
5
- import traceback
6
- from io import BytesIO
7
- from typing import Any, Dict, List, Optional, Tuple
8
- import re
9
- import time
10
- from threading import Thread
11
-
12
- import gradio as gr
13
- import requests
14
- import torch
15
- from PIL import Image
16
-
17
- from transformers import (
18
- Qwen2VLForConditionalGeneration,
19
- Qwen2_5_VLForConditionalGeneration,
20
- AutoModelForImageTextToText,
21
- AutoProcessor,
22
- TextIteratorStreamer,
23
- AutoModel,
24
- AutoTokenizer,
25
- )
26
-
27
- # --- Constants and Model Setup ---
28
- MAX_INPUT_TOKEN_LENGTH = 4096
29
- device = "cuda" if torch.cuda.is_available() else "cpu"
30
-
31
- # --- Prompts for Different Tasks ---
32
- layout_prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
33
-
34
- 1. Bbox format: [x1, y1, x2, y2]
35
- 2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
36
- 3. Text Extraction & Formatting Rules:
37
- - For tables, provide the content in a structured JSON format.
38
- - For all other elements, provide the plain text.
39
- 4. Constraints:
40
- - The output must be the original text from the image.
41
- - All layout elements must be sorted according to human reading order.
42
- 5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```.
43
- """
44
-
45
- ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
46
-
47
- # --- Model Loading ---
48
- MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
49
- processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
50
- model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
51
- MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
52
- ).to(device).eval()
53
-
54
- MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
55
- processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
56
- model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
57
- MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
58
- ).to(device).eval()
59
-
60
- MODEL_ID_C = "nanonets/Nanonets-OCR-s"
61
- processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
62
- model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
63
- MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
64
- ).to(device).eval()
65
-
66
- MODEL_ID_G = "echo840/MonkeyOCR"
67
- SUBFOLDER = "Recognition"
68
- processor_g = AutoProcessor.from_pretrained(
69
- MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
70
- )
71
- model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
72
- MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
73
- ).to(device).eval()
74
-
75
- MODEL_ID_I = "allenai/olmOCR-7B-0725"
76
- processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
77
- model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
78
- MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
79
- ).to(device).eval()
80
-
81
- # --- Utility Functions ---
82
- def layoutjson2md(layout_data: List[Dict]) -> str:
83
- """Converts the structured JSON from Layout Analysis into formatted Markdown."""
84
- markdown_lines = []
85
- try:
86
- # Sort items by reading order (top-to-bottom, left-to-right)
87
- sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0,0,0,0])[1], x.get('bbox', [0,0,0,0])[0]))
88
- for item in sorted_items:
89
- category = item.get('category', '')
90
- text = item.get('text', '')
91
- if not text: continue
92
-
93
- if category == 'Title': markdown_lines.append(f"# {text}\n")
94
- elif category == 'Section-header': markdown_lines.append(f"## {text}\n")
95
- elif category == 'Table':
96
- # Handle structured table JSON
97
- if isinstance(text, dict) and 'header' in text and 'rows' in text:
98
- header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
99
- separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
100
- rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
101
- markdown_lines.extend([header, separator] + rows)
102
- markdown_lines.append("\n")
103
- else: # Fallback for simple text
104
- markdown_lines.append(f"{text}\n")
105
- else:
106
- markdown_lines.append(f"{text}\n")
107
- except Exception as e:
108
- print(f"Error converting to markdown: {e}")
109
- return "### Error converting JSON to Markdown."
110
- return "\n".join(markdown_lines)
111
-
112
- # --- Core Application Logic ---
113
- @spaces.GPU
114
- def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int):
115
- """
116
- Main generator function that handles both OCR and Layout Analysis tasks.
117
- """
118
- if image is None:
119
- yield "Please upload an image.", "Please upload an image.", None
120
- return
121
-
122
- # 1. Select prompt based on user's task choice
123
- text_prompt = ocr_prompt if task_choice == "Content Extraction" else layout_prompt
124
-
125
- # 2. Select model and processor
126
- if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
127
- elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
128
- elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
129
- elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g
130
- elif model_name == "olmOCR-7B-0725": processor, model = processor_i, model_i
131
- else:
132
- yield "Invalid model selected.", "Invalid model selected.", None
133
- return
134
-
135
- # 3. Prepare model inputs and streamer
136
- messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
137
- prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
138
- inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
139
- streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
140
- generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
141
-
142
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
143
- thread.start()
144
-
145
- # 4. Stream raw output to the UI in real-time
146
- buffer = ""
147
- for new_text in streamer:
148
- buffer += new_text
149
- buffer = buffer.replace("<|im_end|>", "")
150
- time.sleep(0.01)
151
- yield buffer, "⏳ Processing...", {"status": "streaming"}
152
-
153
- # 5. Post-process the final buffer based on the selected task
154
- if task_choice == "Content Extraction":
155
- # For OCR, the buffer is the final result.
156
- yield buffer, buffer, None
157
- else: # Layout Analysis
158
- try:
159
- json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
160
- if not json_match:
161
- raise json.JSONDecodeError("JSON object not found in output.", buffer, 0)
162
-
163
- json_str = json_match.group(1)
164
- layout_data = json.loads(json_str)
165
- markdown_content = layoutjson2md(layout_data)
166
-
167
- yield buffer, markdown_content, layout_data
168
- except Exception as e:
169
- error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}`"
170
- error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
171
- yield buffer, error_md, error_json
172
-
173
- # --- Gradio UI Definition ---
174
- def create_gradio_interface():
175
- """Builds and returns the Gradio web interface."""
176
- css = """
177
- .main-container { max-width: 1400px; margin: 0 auto; }
178
- .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
179
- .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
180
- """
181
- with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
182
- gr.HTML("""
183
- <div class="title" style="text-align: center">
184
- <h1>OCR Comparator🥠</h1>
185
- <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
186
- Advanced Vision-Language Model for Image Content and Layout Extraction
187
- </p>
188
- </div>
189
- """)
190
-
191
- with gr.Row():
192
- # Left Column (Inputs)
193
- with gr.Column(scale=1):
194
- model_choice = gr.Dropdown(
195
- choices=["Camel-Doc-OCR-080125",
196
- "MonkeyOCR-Recognition",
197
- "olmOCR-7B-0725",
198
- "Nanonets-OCR-s",
199
- "Megalodon-OCR-Sync-0713"
200
- ],
201
- label="Select Model", value="Nanonets-OCR-s"
202
- )
203
- task_choice = gr.Dropdown(
204
- choices=["Content Extraction", "Layout Analysis(.json)"],
205
- label="Select Task", value="Content Extraction"
206
- )
207
- image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
208
- with gr.Accordion("Advanced Settings", open=False):
209
- max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
210
-
211
- process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
212
- clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
213
-
214
- # Right Column (Outputs)
215
- with gr.Column(scale=2):
216
- with gr.Tabs() as tabs:
217
- with gr.Tab("📝 Extracted Content"):
218
- raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=13, show_copy_button=True)
219
- with gr.Row():
220
- examples = gr.Examples(
221
- examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
222
- inputs=image_input,
223
- label="Examples"
224
- )
225
- with gr.Tab("📰 README.md"):
226
- with gr.Accordion("(Formatted Result)", open=True):
227
- markdown_output = gr.Markdown(label="Formatted Markdown")
228
-
229
- with gr.Tab("📋 Layout Analysis Results"):
230
- json_output = gr.JSON(label="Structured Layout Data (JSON)")
231
-
232
- # Event Handlers
233
- def clear_all_outputs():
234
- return None, "Raw output will appear here.", "Formatted results will appear here.", None
235
-
236
- process_btn.click(
237
- fn=process_document_stream,
238
- inputs=[model_choice,
239
- task_choice,
240
- image_input,
241
- max_new_tokens],
242
- outputs=[raw_output_stream,
243
- markdown_output,
244
- json_output]
245
- )
246
- clear_btn.click(
247
- clear_all_outputs,
248
- outputs=[image_input,
249
- raw_output_stream,
250
- markdown_output,
251
- json_output]
252
- )
253
- return demo
254
-
255
- if __name__ == "__main__":
256
- demo = create_gradio_interface()
257
- demo.queue(max_size=40).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)