Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,329 +2,268 @@ import os
|
|
2 |
import random
|
3 |
import uuid
|
4 |
import json
|
|
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
-
from PIL import Image
|
9 |
import spaces
|
10 |
import torch
|
|
|
|
|
|
|
11 |
|
12 |
-
from
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
default_negative = os.getenv("default_negative","")
|
19 |
-
|
20 |
-
def check_text(prompt, negative=""):
|
21 |
-
for i in bad_words:
|
22 |
-
if i in prompt:
|
23 |
-
return True
|
24 |
-
for i in bad_words_negative:
|
25 |
-
if i in negative:
|
26 |
-
return True
|
27 |
-
return False
|
28 |
-
|
29 |
-
style_list = [
|
30 |
-
{
|
31 |
-
"name": "Photo",
|
32 |
-
"prompt": "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
33 |
-
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"name": "Cinematic",
|
37 |
-
"prompt": "cinematic still {prompt}. emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
38 |
-
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"name": "Anime",
|
42 |
-
"prompt": "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
|
43 |
-
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
44 |
-
},
|
45 |
-
{
|
46 |
-
"name": "3D Model",
|
47 |
-
"prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
|
48 |
-
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"name": "(No style)",
|
52 |
-
"prompt": "{prompt}",
|
53 |
-
"negative_prompt": "",
|
54 |
-
},
|
55 |
-
]
|
56 |
-
|
57 |
-
DESCRIPTION = """##
|
58 |
-
|
59 |
-
|
60 |
-
"""
|
61 |
-
|
62 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
63 |
-
STYLE_NAMES = list(styles.keys())
|
64 |
-
DEFAULT_STYLE_NAME = "Photo"
|
65 |
-
|
66 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
67 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
68 |
-
if not negative:
|
69 |
-
negative = ""
|
70 |
-
return p.replace("{prompt}", positive), n + negative
|
71 |
-
|
72 |
-
if not torch.cuda.is_available():
|
73 |
-
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
80 |
|
81 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
else:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
else:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
"
|
157 |
-
"
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
"
|
162 |
-
"
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
}
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
# Or, we can return a placeholder or raise a specific error.
|
180 |
-
# To prevent errors if running without GPU and models didn't load:
|
181 |
-
placeholder_image = Image.new('RGB', (width, height), color = 'grey')
|
182 |
-
draw = ImageDraw.Draw(placeholder_image)
|
183 |
-
draw.text((10, 10), "GPU models not loaded. Cannot generate image.", fill=(255,0,0))
|
184 |
-
images.append(placeholder_image)
|
185 |
-
|
186 |
-
|
187 |
-
image_paths = [save_image(img) for img in images]
|
188 |
-
return image_paths, seed
|
189 |
|
190 |
-
|
191 |
-
"
|
|
|
192 |
]
|
193 |
|
194 |
-
css =
|
195 |
-
.
|
196 |
-
|
197 |
-
|
198 |
-
}
|
199 |
-
h1 {
|
200 |
-
text-align: center; /* Existing style */
|
201 |
}
|
202 |
-
|
203 |
-
|
204 |
}
|
205 |
-
|
206 |
-
with gr.Blocks(css=css) as demo:
|
207 |
-
gr.Markdown(DESCRIPTION)
|
208 |
-
with gr.Row():
|
209 |
-
prompt = gr.Text(
|
210 |
-
show_label=False,
|
211 |
-
max_lines=1,
|
212 |
-
placeholder="Enter your prompt",
|
213 |
-
container=False,
|
214 |
-
)
|
215 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
216 |
-
result = gr.Gallery(label="Result", columns=1, preview=True) # columns=1 for single image below each other if multiple
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
minimum=
|
242 |
-
maximum=
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
with gr.
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
value=2, # Default value in UI (backend NUM_IMAGES_PER_PROMPT is 1, resulting in 2 total)
|
253 |
-
)
|
254 |
-
seed = gr.Slider(
|
255 |
-
label="Seed",
|
256 |
-
minimum=0,
|
257 |
-
maximum=MAX_SEED,
|
258 |
-
step=1,
|
259 |
-
value=0,
|
260 |
-
visible=True
|
261 |
-
)
|
262 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
263 |
-
with gr.Row(visible=True):
|
264 |
-
width = gr.Slider(
|
265 |
-
label="Width",
|
266 |
-
minimum=512,
|
267 |
-
maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE
|
268 |
-
step=8,
|
269 |
-
value=1024,
|
270 |
-
)
|
271 |
-
height = gr.Slider(
|
272 |
-
label="Height",
|
273 |
-
minimum=512,
|
274 |
-
maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE
|
275 |
-
step=8,
|
276 |
-
value=1024,
|
277 |
-
)
|
278 |
-
with gr.Row():
|
279 |
-
guidance_scale = gr.Slider(
|
280 |
-
label="Guidance Scale",
|
281 |
-
minimum=0.1,
|
282 |
-
maximum=20.0,
|
283 |
-
step=0.1,
|
284 |
-
value=3.0,
|
285 |
)
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
fn=
|
294 |
-
|
|
|
295 |
)
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
outputs=negative_prompt,
|
301 |
-
api_name=False,
|
302 |
-
)
|
303 |
-
|
304 |
-
gr.on(
|
305 |
-
triggers=[
|
306 |
-
prompt.submit,
|
307 |
-
negative_prompt.submit, # Allow submitting negative prompt to trigger run
|
308 |
-
run_button.click,
|
309 |
-
],
|
310 |
-
fn=generate,
|
311 |
-
inputs=[
|
312 |
-
prompt,
|
313 |
-
negative_prompt,
|
314 |
-
use_negative_prompt,
|
315 |
-
style_selection, # style_selection is correctly in inputs
|
316 |
-
seed,
|
317 |
-
width,
|
318 |
-
height,
|
319 |
-
guidance_scale,
|
320 |
-
randomize_seed,
|
321 |
-
],
|
322 |
-
outputs=[result, seed],
|
323 |
-
api_name="run",
|
324 |
)
|
325 |
|
326 |
if __name__ == "__main__":
|
327 |
-
|
328 |
-
from PIL import ImageDraw # Add ImageDraw import for CPU placeholder
|
329 |
-
|
330 |
-
demo.queue(max_size=20).launch(ssr_mode=True, show_error=True, share=True)
|
|
|
2 |
import random
|
3 |
import uuid
|
4 |
import json
|
5 |
+
import time
|
6 |
+
import asyncio
|
7 |
+
from threading import Thread
|
8 |
|
9 |
import gradio as gr
|
|
|
|
|
10 |
import spaces
|
11 |
import torch
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import cv2
|
15 |
|
16 |
+
from transformers import (
|
17 |
+
Qwen2_5_VLForConditionalGeneration,
|
18 |
+
AutoProcessor,
|
19 |
+
TextIteratorStreamer,
|
20 |
+
)
|
21 |
+
from transformers.image_utils import load_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Constants for text generation
|
24 |
+
MAX_MAX_NEW_TOKENS = 2048
|
25 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
26 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
27 |
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
|
30 |
+
# Load Cosmos-Reason1-7B
|
31 |
+
MODEL_ID_M = "nvidia/Cosmos-Reason1-7B"
|
32 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
33 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
34 |
+
MODEL_ID_M,
|
35 |
+
trust_remote_code=True,
|
36 |
+
torch_dtype=torch.float16
|
37 |
+
).to(device).eval()
|
38 |
+
|
39 |
+
# Load DocScope
|
40 |
+
MODEL_ID_X = "prithivMLmods/docscopeOCR-7B-050425-exp"
|
41 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
42 |
+
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
43 |
+
MODEL_ID_X,
|
44 |
+
trust_remote_code=True,
|
45 |
+
torch_dtype=torch.float16
|
46 |
+
).to(device).eval()
|
47 |
+
|
48 |
+
# Load Relaxed
|
49 |
+
MODEL_ID_Z = "Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed"
|
50 |
+
processor_z = AutoProcessor.from_pretrained(MODEL_ID_Z, trust_remote_code=True)
|
51 |
+
model_z = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
52 |
+
MODEL_ID_Z,
|
53 |
+
trust_remote_code=True,
|
54 |
+
torch_dtype=torch.float16
|
55 |
+
).to(device).eval()
|
56 |
+
|
57 |
+
def downsample_video(video_path):
|
58 |
+
"""
|
59 |
+
Downsamples the video to evenly spaced frames.
|
60 |
+
Each frame is returned as a PIL image along with its timestamp.
|
61 |
+
"""
|
62 |
+
vidcap = cv2.VideoCapture(video_path)
|
63 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
64 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
65 |
+
frames = []
|
66 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
67 |
+
for i in frame_indices:
|
68 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
69 |
+
success, image = vidcap.read()
|
70 |
+
if success:
|
71 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
72 |
+
pil_image = Image.fromarray(image)
|
73 |
+
timestamp = round(i / fps, 2)
|
74 |
+
frames.append((pil_image, timestamp))
|
75 |
+
vidcap.release()
|
76 |
+
return frames
|
77 |
+
|
78 |
+
@spaces.GPU
|
79 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
80 |
+
max_new_tokens: int = 1024,
|
81 |
+
temperature: float = 0.6,
|
82 |
+
top_p: float = 0.9,
|
83 |
+
top_k: int = 50,
|
84 |
+
repetition_penalty: float = 1.2):
|
85 |
+
"""
|
86 |
+
Generates responses using the selected model for image input.
|
87 |
+
"""
|
88 |
+
if model_name == "Cosmos-Reason1-7B":
|
89 |
+
processor = processor_m
|
90 |
+
model = model_m
|
91 |
+
elif model_name == "docscopeOCR-7B-050425-exp":
|
92 |
+
processor = processor_x
|
93 |
+
model = model_x
|
94 |
+
elif model_name == "Captioner-7B":
|
95 |
+
processor = processor_z
|
96 |
+
model = model_z
|
97 |
else:
|
98 |
+
yield "Invalid model selected."
|
99 |
+
return
|
100 |
+
|
101 |
+
if image is None:
|
102 |
+
yield "Please upload an image."
|
103 |
+
return
|
104 |
+
|
105 |
+
messages = [{
|
106 |
+
"role": "user",
|
107 |
+
"content": [
|
108 |
+
{"type": "image", "image": image},
|
109 |
+
{"type": "text", "text": text},
|
110 |
+
]
|
111 |
+
}]
|
112 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
113 |
+
inputs = processor(
|
114 |
+
text=[prompt_full],
|
115 |
+
images=[image],
|
116 |
+
return_tensors="pt",
|
117 |
+
padding=True,
|
118 |
+
truncation=False,
|
119 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
120 |
+
).to(device)
|
121 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
122 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
123 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
124 |
+
thread.start()
|
125 |
+
buffer = ""
|
126 |
+
for new_text in streamer:
|
127 |
+
buffer += new_text
|
128 |
+
time.sleep(0.01)
|
129 |
+
yield buffer
|
130 |
+
|
131 |
+
@spaces.GPU
|
132 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
133 |
+
max_new_tokens: int = 1024,
|
134 |
+
temperature: float = 0.6,
|
135 |
+
top_p: float = 0.9,
|
136 |
+
top_k: int = 50,
|
137 |
+
repetition_penalty: float = 1.2):
|
138 |
+
"""
|
139 |
+
Generates responses using the selected model for video input.
|
140 |
+
"""
|
141 |
+
if model_name == "Cosmos-Reason1-7B":
|
142 |
+
processor = processor_m
|
143 |
+
model = model_m
|
144 |
+
elif model_name == "docscopeOCR-7B-050425-exp":
|
145 |
+
processor = processor_x
|
146 |
+
model = model_x
|
147 |
+
elif model_name == "Captioner-7B":
|
148 |
+
processor = processor_z
|
149 |
+
model = model_z
|
150 |
else:
|
151 |
+
yield "Invalid model selected."
|
152 |
+
return
|
153 |
+
|
154 |
+
if video_path is None:
|
155 |
+
yield "Please upload a video."
|
156 |
+
return
|
157 |
+
|
158 |
+
frames = downsample_video(video_path)
|
159 |
+
messages = [
|
160 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
161 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
162 |
+
]
|
163 |
+
for frame in frames:
|
164 |
+
image, timestamp = frame
|
165 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
166 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
167 |
+
inputs = processor.apply_chat_template(
|
168 |
+
messages,
|
169 |
+
tokenize=True,
|
170 |
+
add_generation_prompt=True,
|
171 |
+
return_dict=True,
|
172 |
+
return_tensors="pt",
|
173 |
+
truncation=False,
|
174 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
175 |
+
).to(device)
|
176 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
177 |
+
generation_kwargs = {
|
178 |
+
**inputs,
|
179 |
+
"streamer": streamer,
|
180 |
+
"max_new_tokens": max_new_tokens,
|
181 |
+
"do_sample": True,
|
182 |
+
"temperature": temperature,
|
183 |
+
"top_p": top_p,
|
184 |
+
"top_k": top_k,
|
185 |
+
"repetition_penalty": repetition_penalty,
|
186 |
}
|
187 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
188 |
+
thread.start()
|
189 |
+
buffer = ""
|
190 |
+
for new_text in streamer:
|
191 |
+
buffer += new_text
|
192 |
+
time.sleep(0.01)
|
193 |
+
yield buffer
|
194 |
+
|
195 |
+
# Define examples for image and video inference
|
196 |
+
image_examples = [
|
197 |
+
["type out the messy hand-writing as accurately as you can.", "images/1.jpg"],
|
198 |
+
["count the number of birds and explain the scene in detail.", "images/2.jpg"]
|
199 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
video_examples = [
|
202 |
+
["give the highlights of the movie scene video.", "videos/1.mp4"],
|
203 |
+
["explain the advertisement in detail.", "videos/2.mp4"]
|
204 |
]
|
205 |
|
206 |
+
css = """
|
207 |
+
.submit-btn {
|
208 |
+
background-color: #2980b9 !important;
|
209 |
+
color: white !important;
|
|
|
|
|
|
|
210 |
}
|
211 |
+
.submit-btn:hover {
|
212 |
+
background-color: #3498db !important;
|
213 |
}
|
214 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
# Create the Gradio Interface
|
217 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
218 |
+
gr.Markdown("# **VisionScope-R2**")
|
219 |
+
with gr.Row():
|
220 |
+
with gr.Column():
|
221 |
+
with gr.Tabs():
|
222 |
+
with gr.TabItem("Image Inference"):
|
223 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
224 |
+
image_upload = gr.Image(type="pil", label="Image")
|
225 |
+
image_submit = gr.Button("Submit", elem_classes="submit-btn")
|
226 |
+
gr.Examples(
|
227 |
+
examples=image_examples,
|
228 |
+
inputs=[image_query, image_upload]
|
229 |
+
)
|
230 |
+
with gr.TabItem("Video Inference"):
|
231 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
232 |
+
video_upload = gr.Video(label="Video")
|
233 |
+
video_submit = gr.Button("Submit", elem_classes="submit-btn")
|
234 |
+
gr.Examples(
|
235 |
+
examples=video_examples,
|
236 |
+
inputs=[video_query, video_upload]
|
237 |
+
)
|
238 |
+
with gr.Accordion("Advanced options", open=False):
|
239 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
240 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
241 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
242 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
243 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
244 |
+
with gr.Column():
|
245 |
+
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
246 |
+
model_choice = gr.Radio(
|
247 |
+
choices=["Cosmos-Reason1-7B", "docscopeOCR-7B-050425-exp", "Captioner-7B"],
|
248 |
+
label="Select Model",
|
249 |
+
value="Cosmos-Reason1-7B"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
)
|
251 |
+
|
252 |
+
gr.Markdown("**Model Info**")
|
253 |
+
gr.Markdown("⤷ [Cosmos-Reason1-7B](https://huggingface.co/nvidia/Cosmos-Reason1-7B): understand physical common sense and generate appropriate embodied decisions.")
|
254 |
+
gr.Markdown("⤷ [docscopeOCR-7B-050425-exp](https://huggingface.co/prithivMLmods/docscopeOCR-7B-050425-exp): optimized for document-level optical character recognition, long-context vision-language understanding.")
|
255 |
+
gr.Markdown("⤷ [Captioner-Relaxed-7B](https://huggingface.co/Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed): build with hand-curated dataset for text-to-image models, providing significantly more detailed descriptions or captions of given images.")
|
256 |
+
|
257 |
+
image_submit.click(
|
258 |
+
fn=generate_image,
|
259 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
260 |
+
outputs=output
|
261 |
)
|
262 |
+
video_submit.click(
|
263 |
+
fn=generate_video,
|
264 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
265 |
+
outputs=output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
)
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
|
|