Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ import cv2
|
|
15 |
|
16 |
from transformers import (
|
17 |
Qwen2_5_VLForConditionalGeneration,
|
|
|
18 |
AutoProcessor,
|
19 |
TextIteratorStreamer,
|
20 |
)
|
@@ -27,10 +28,10 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
27 |
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
|
30 |
-
# Load
|
31 |
-
MODEL_ID_M = "
|
32 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
33 |
-
model_m =
|
34 |
MODEL_ID_M,
|
35 |
trust_remote_code=True,
|
36 |
torch_dtype=torch.float16
|
@@ -85,7 +86,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
85 |
"""
|
86 |
Generates responses using the selected model for image input.
|
87 |
"""
|
88 |
-
if model_name == "
|
89 |
processor = processor_m
|
90 |
model = model_m
|
91 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
@@ -138,7 +139,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
138 |
"""
|
139 |
Generates responses using the selected model for video input.
|
140 |
"""
|
141 |
-
if model_name == "
|
142 |
processor = processor_m
|
143 |
model = model_m
|
144 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
@@ -244,9 +245,9 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
244 |
with gr.Column():
|
245 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
246 |
model_choice = gr.Radio(
|
247 |
-
choices=["
|
248 |
label="Select Model",
|
249 |
-
value="
|
250 |
)
|
251 |
|
252 |
gr.Markdown("**Model Info**")
|
|
|
15 |
|
16 |
from transformers import (
|
17 |
Qwen2_5_VLForConditionalGeneration,
|
18 |
+
Gemma3ForConditionalGeneration,
|
19 |
AutoProcessor,
|
20 |
TextIteratorStreamer,
|
21 |
)
|
|
|
28 |
|
29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
+
# Load gemma-3-4b-it
|
32 |
+
MODEL_ID_M = "google/gemma-3-4b-it"
|
33 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
34 |
+
model_m = Gemma3ForConditionalGeneration.from_pretrained(
|
35 |
MODEL_ID_M,
|
36 |
trust_remote_code=True,
|
37 |
torch_dtype=torch.float16
|
|
|
86 |
"""
|
87 |
Generates responses using the selected model for image input.
|
88 |
"""
|
89 |
+
if model_name == "gemma-3-4b-it":
|
90 |
processor = processor_m
|
91 |
model = model_m
|
92 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
|
|
139 |
"""
|
140 |
Generates responses using the selected model for video input.
|
141 |
"""
|
142 |
+
if model_name == "gemma-3-4b-it":
|
143 |
processor = processor_m
|
144 |
model = model_m
|
145 |
elif model_name == "docscopeOCR-7B-050425-exp":
|
|
|
245 |
with gr.Column():
|
246 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
247 |
model_choice = gr.Radio(
|
248 |
+
choices=["gemma-3-4b-it", "docscopeOCR-7B-050425-exp", "Captioner-7B"],
|
249 |
label="Select Model",
|
250 |
+
value="gemma-3-4b-it"
|
251 |
)
|
252 |
|
253 |
gr.Markdown("**Model Info**")
|