File size: 11,058 Bytes
9d70534
 
 
 
231ec6e
9d70534
 
 
 
231ec6e
9d70534
231ec6e
 
9d70534
 
231ec6e
 
a5e1c7c
9d70534
231ec6e
 
 
9d70534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231ec6e
41559d0
 
 
 
 
 
 
 
 
 
 
7390076
41559d0
 
 
 
 
 
 
231ec6e
 
9d70534
 
231ec6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d70534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeee0c0
41559d0
 
9d70534
 
231ec6e
 
9d70534
 
 
231ec6e
9d70534
 
 
 
 
 
 
231ec6e
 
 
9d70534
231ec6e
 
9d70534
 
 
231ec6e
9d70534
231ec6e
 
 
 
 
 
 
 
 
9d70534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeee0c0
41559d0
 
9d70534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2adb6bc
9d70534
 
 
 
 
97635b6
2adb6bc
 
231ec6e
 
9d70534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ddc51
9d70534
eeee0c0
9d70534
 
 
 
 
612149f
f735a21
fbc860a
9d70534
 
 
 
 
 
 
 
 
 
 
231ec6e
9d70534
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForImageTextToText,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load docscopeOCR-7B-050425-exp
MODEL_ID_M = "prithivMLmods/docscopeOCR-7B-050425-exp"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load coreOCR-7B-050325-preview
MODEL_ID_X = "prithivMLmods/coreOCR-7B-050325-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

#--------------------------------------------------------------------------------------#
#Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"

processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER
)

model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()
#--------------------------------------------------------------------------------------#

def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if model_name == "docscopeOCR-7B-050425-exp":
        processor = processor_m
        model = model_m
    elif model_name == "coreOCR-7B-050325-preview":
        processor = processor_x
        model = model_x
    elif model_name == "MonkeyOCR-Recognition":
        processor = processor_g
        model = model_g
    else:
        yield "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if model_name == "docscopeOCR-7B-050425-exp":
        processor = processor_m
        model = model_m
    elif model_name == "coreOCR-7B-050325-preview":
        processor = processor_x
        model = model_x
    elif model_name == "MonkeyOCR-Recognition":
        processor = processor_g
        model = model_g
    else:
        yield "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video."
        return

    frames = downsample_video(video_path)
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": text}]}
    ]
    for frame in frames:
        image, timestamp = frame
        messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
        messages[1]["content"].append({"type": "image", "image": image})
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

# Define examples for image and video inference
image_examples = [
    ["fill the correct numbers", "example/image3.png"],
    ["ocr the image", "example/image1.png"],
    ["explain the scene", "example/image2.jpg"],
]

video_examples = [
    ["Explain the ad in detail", "example/1.mp4"],
    ["Identify the main actions in the coca cola ad...", "example/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[core OCR](https://huggingface.co/collections/prithivMLmods/core-and-docscope-ocr-models-6816d7f1bde3f911c6c852bc)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
            model_choice = gr.Radio(
                choices=["docscopeOCR-7B-050425-exp", "MonkeyOCR-Recognition", "coreOCR-7B-050325-preview"],
                label="Select Model",
                value="docscopeOCR-7B-050425-exp"
            )
            
            gr.Markdown("**Model Info**")
            gr.Markdown("> [docscopeOCR-7B-050425-exp](https://huggingface.co/prithivMLmods/docscopeOCR-7B-050425-exp): The docscopeOCR-7B-050425-exp model is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Document-Level Optical Character Recognition (OCR), long-context vision-language understanding, and accurate image-to-text conversion with mathematical LaTeX formatting.")
            gr.Markdown("> [MonkeyOCR](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
            gr.Markdown("> [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): The coreOCR-7B-050325-preview model is a fine-tuned version of Qwen2-VL-7B, optimized for Document-Level Optical Character Recognition (OCR), long-context vision-language understanding, and accurate image-to-text conversion with mathematical LaTeX formatting.")

    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)