Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,479 Bytes
71b21b4 78be7e8 71b21b4 54875b8 71b21b4 78be7e8 71b21b4 74ba6ce 78be7e8 74ba6ce 71b21b4 78be7e8 f4bb0af 74ba6ce 78be7e8 74ba6ce 78be7e8 71b21b4 78be7e8 54875b8 78be7e8 54875b8 71b21b4 78be7e8 54875b8 74ba6ce 54875b8 71b21b4 78be7e8 74ba6ce 71b21b4 74ba6ce 78be7e8 71b21b4 78be7e8 54875b8 74ba6ce 78be7e8 74ba6ce 78be7e8 54875b8 74ba6ce 78be7e8 74ba6ce 78be7e8 54875b8 78be7e8 74ba6ce 78be7e8 74ba6ce 78be7e8 74ba6ce 71b21b4 74ba6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import random
import uuid
import time
import asyncio
from threading import Thread
from typing import Tuple
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
# ---------------------------
# Global Settings and Devices
# ---------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MAX_SEED = np.iinfo(np.int32).max
# ---------------------------
# IMAGE GEN LO_RA TAB: SDXL Gen with LoRA Options
# ---------------------------
# Load the SDXL pipeline
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # Path from env variable
if MODEL_ID_SD is None:
MODEL_ID_SD = "SG161222/RealVisXL_V4.0_Lightning" # default fallback
# Load SDXL pipeline (use GPU if available)
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
# Optional: compile or offload if desired
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
if USE_TORCH_COMPILE:
sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
def save_image(img: Image.Image) -> str:
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# LoRA options and style definitions
LORA_OPTIONS = {
"Realism (face/character)π¦π»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar (art/toons)π": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot (camera/film)πΈ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing (hoodies/pant/shirts)π": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior Architecture (house/hotel)π ": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1Ξ΄.safetensors", "arch"),
"Fashion Product (wearing/usable)π": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic Image (minimal/detailed)ποΈ": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern Clothing (trend/new)π": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea (farm/wild)π«": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Liquid Wallpaper (minimal/illustration)πΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Canes Cars (realistic/futurecars)π": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"Pencil Art (characteristic/creative)βοΈ": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"Art Minimalistic (paint/semireal)π¨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
return p.replace("{prompt}", positive), n + negative
@spaces.GPU(duration=180, enable_queue=True)
def generate_image_lora(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = True,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
lora_model: str = "Realism (face/character)π¦π»",
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
if not use_negative_prompt:
effective_negative_prompt = ""
# Set LoRA adapter based on selection
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
sd_pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
sd_pipe.to(device)
outputs = sd_pipe(
prompt=positive_prompt,
negative_prompt=effective_negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
)
image_paths = [save_image(img) for img in outputs.images]
return image_paths, seed
# ---------------------------
# Qwen 2 VL OCR TAB
# ---------------------------
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_QWEN,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
@spaces.GPU
def qwen2vl_ocr_generate(
prompt: str,
file: list,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
# In this tab, we assume the user supplies an image (or multiple images) for OCR.
images = []
if file:
# load image(s) using the helper function
for f in file:
images.append(load_image(f))
else:
# If no image provided, use an empty list
images = []
# Build message content: We use a simple chat template with text and images.
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
# Use non-streaming generation for simplicity
output_ids = model_m.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
final_response = processor.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return final_response
# ---------------------------
# CHAT INTERFACE TAB (Text-only)
# ---------------------------
# Load text-only model and tokenizer
model_id_text = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id_text)
model = AutoModelForCausalLM.from_pretrained(
model_id_text,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
def chat_generate(prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6,
top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
# For simplicity, use a basic generate without streaming.
input_ids = tokenizer.encode(prompt, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
input_ids = input_ids.to(model.device)
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
# ---------------------------
# GRADIO INTERFACE WITH TABS
# ---------------------------
with gr.Blocks(title="Multi-Modal Playground") as demo:
gr.Markdown("# Multi-Modal Playground")
with gr.Tab("Image Gen LoRA"):
gr.Markdown("## Generate Images using SDXL + LoRA")
with gr.Row():
prompt_img = gr.Textbox(label="Prompt", placeholder="Enter your image prompt here")
negative_prompt_img = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt (optional)", lines=2)
with gr.Row():
use_negative = gr.Checkbox(label="Use Negative Prompt", value=True)
seed_img = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width_img = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
height_img = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
with gr.Row():
guidance_scale_img = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0)
with gr.Row():
style_selection = gr.Radio(choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style")
lora_selection = gr.Dropdown(choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)π¦π»", label="LoRA Selection")
run_img = gr.Button("Generate Image")
gallery = gr.Gallery(label="Generated Images", columns=1).style(full_width=True)
output_seed = gr.Number(label="Seed Used")
run_img.click(
generate_image_lora,
inputs=[prompt_img, negative_prompt_img, use_negative, seed_img, width_img, height_img, guidance_scale_img,
randomize_seed, style_selection, lora_selection],
outputs=[gallery, output_seed]
)
with gr.Tab("Qwen 2 VL OCR"):
gr.Markdown("## Extract and Generate Text from Images (OCR)")
with gr.Row():
prompt_ocr = gr.Textbox(label="OCR Prompt", placeholder="Enter instructions for OCR/text extraction")
file_ocr = gr.File(label="Upload Image", file_types=["image"], file_count="multiple")
run_ocr = gr.Button("Run OCR")
output_ocr = gr.Textbox(label="OCR Output")
run_ocr.click(
qwen2vl_ocr_generate,
inputs=[prompt_ocr, file_ocr],
outputs=output_ocr
)
with gr.Tab("Chat Interface"):
gr.Markdown("## Chat with the Text-Only Model")
chat_input = gr.Textbox(label="Enter your message", placeholder="Say something...")
max_tokens_chat = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature_chat = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p_chat = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k_chat = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
rep_penalty_chat = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
run_chat = gr.Button("Send")
chat_output = gr.Textbox(label="Response")
run_chat.click(
chat_generate,
inputs=[chat_input, max_tokens_chat, temperature_chat, top_p_chat, top_k_chat, rep_penalty_chat],
outputs=chat_output
)
gr.Markdown("**Adjust parameters in each tab as needed.**")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |