Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler # EulerAncestralDiscreteScheduler not explicitly used but imported | |
from typing import Tuple | |
bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) | |
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) | |
default_negative = os.getenv("default_negative","") | |
def check_text(prompt, negative=""): | |
for i in bad_words: | |
if i in prompt: | |
return True | |
for i in bad_words_negative: | |
if i in negative: | |
return True | |
return False | |
style_list = [ | |
{ | |
"name": "Photo", | |
"prompt": "cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt}. emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "Photo" | |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
if not negative: | |
negative = "" | |
return p.replace("{prompt}", positive), n + negative | |
DESCRIPTION = """## SDXL Image Generation | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
NUM_IMAGES_PER_PROMPT = 1 | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
add_watermarker=False, | |
variant="fp16" | |
) | |
pipe2 = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
add_watermarker=False, | |
variant="fp16" | |
) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
pipe2.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
pipe2.to(device) | |
print("Loaded on Device!") | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) | |
print("Model Compiled!") | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
style: str = DEFAULT_STYLE_NAME, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
randomize_seed: bool = False, | |
use_resolution_binning: bool = True, # This parameter is not exposed in the UI by default | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if check_text(prompt, negative_prompt): | |
raise ValueError("Prompt contains restricted words.") | |
prompt, negative_prompt_from_style = apply_style(style, prompt, "") # Apply style positive first | |
# Combine negative prompts | |
if use_negative_prompt: | |
final_negative_prompt = negative_prompt_from_style + " " + negative_prompt + " " + default_negative | |
else: | |
final_negative_prompt = negative_prompt_from_style + " " + default_negative | |
final_negative_prompt = final_negative_prompt.strip() | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator(device=device).manual_seed(seed) # Ensure generator is on the correct device | |
options = { | |
"prompt": prompt, | |
"negative_prompt": final_negative_prompt, | |
"width": width, | |
"height": height, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": 25, # This is hardcoded, UI slider for steps is not connected | |
"generator": generator, | |
"num_images_per_prompt": NUM_IMAGES_PER_PROMPT, # UI slider for images is not connected to this | |
# "use_resolution_binning": use_resolution_binning, # This was in original code, but not defined. Diffusers handles it. | |
"output_type": "pil", | |
} | |
# If on CPU, ensure generator is for CPU | |
if device.type == 'cpu': | |
generator = torch.Generator(device='cpu').manual_seed(seed) | |
options["generator"] = generator | |
images = [] | |
if 'pipe' in globals(): # Check if pipes are loaded (i.e. on GPU) | |
images.extend(pipe(**options).images) | |
images.extend(pipe2(**options).images) | |
else: # Fallback for CPU or if pipes are not loaded (though the DESCRIPTION warns about CPU) | |
# This part would need a CPU-compatible pipeline if one isn't loaded. | |
# For now, it will likely error if pipe/pipe2 aren't available. | |
# Or, we can return a placeholder or raise a specific error. | |
# To prevent errors if running without GPU and models didn't load: | |
placeholder_image = Image.new('RGB', (width, height), color = 'grey') | |
draw = ImageDraw.Draw(placeholder_image) | |
draw.text((10, 10), "GPU models not loaded. Cannot generate image.", fill=(255,0,0)) | |
images.append(placeholder_image) | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
examples = [ | |
"3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", | |
"A glass cup of cold coffee placed on a rustic wooden table, surrounded by soft morning light. The coffee is rich, dark, and topped with a light layer of creamy froth, droplets of condensation sliding down the glass.", | |
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw", | |
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5", | |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 " | |
] | |
css = ''' | |
.gradio-container { | |
max-width: 590px !important; /* Existing style */ | |
margin: 0 auto !important; /* Existing style */ | |
} | |
h1 { | |
text-align: center; /* Existing style */ | |
} | |
footer { | |
visibility: hidden; /* Existing style */ | |
} | |
''' | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Gallery(label="Result", columns=1, preview=True) # columns=1 for single image below each other if multiple | |
with gr.Accordion("Advanced options", open=False): | |
style_selection = gr.Dropdown( # MODIFIED: Was gr.Radio, moved into accordion | |
label="Image Style", | |
choices=STYLE_NAMES, | |
value=DEFAULT_STYLE_NAME, | |
interactive=True, | |
show_label=True, | |
container=True, | |
) | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt (appended to style's negative)", | |
value="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck", | |
visible=True, | |
) | |
# Note: num_inference_steps and num_images_per_prompt sliders are defined in UI | |
# but not wired to the generate function's parameters that control these aspects. | |
# Keeping them as is, per "Don't alter the remaining functionality". | |
with gr.Row(): | |
num_inference_steps = gr.Slider( # This UI element is not connected to the backend | |
label="Steps (Not Connected)", | |
minimum=10, | |
maximum=60, | |
step=1, | |
value=20, # Default value in UI | |
) | |
with gr.Row(): | |
num_images_per_prompt = gr.Slider( # This UI element is not connected to the backend | |
label="Images (Not Connected)", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, # Default value in UI (backend NUM_IMAGES_PER_PROMPT is 1, resulting in 2 total) | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, # Use MAX_IMAGE_SIZE | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
step=0.1, | |
value=3.0, | |
) | |
# Original style_selection gr.Row has been removed from here. | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], # seed output is good for reproducibility | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, # Allow submitting negative prompt to trigger run | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
style_selection, # style_selection is correctly in inputs | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
# For CPU execution, model loading might take time or fail if not handled. | |
# The `if torch.cuda.is_available():` block handles model loading for GPU. | |
# A CPU fallback for inference would require a CPU-compatible model or different handling in `generate`. | |
# The provided code primarily targets GPU. | |
# Added a basic placeholder image generation in `generate` if pipes are not loaded. | |
# Also need `ImageDraw` for that. | |
from PIL import ImageDraw # Add ImageDraw import for CPU placeholder | |
demo.queue(max_size=20).launch(ssr_mode=True, show_error=True, share=True) |