Spaces:
Running
Running
Commit
·
68acb0b
1
Parent(s):
1e44c85
changes in prompt to address issue in welcome message of comment about not excerpts
Browse files- app.py +8 -6
- helpmate_ai.py +15 -7
app.py
CHANGED
@@ -2,7 +2,7 @@ from fastapi import FastAPI, Request, Depends, HTTPException, Header, File, Uplo
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
from typing import List, Optional
|
5 |
-
from helpmate_ai import
|
6 |
import google.generativeai as genai
|
7 |
import os
|
8 |
from dotenv import load_dotenv
|
@@ -53,7 +53,7 @@ class Report(BaseModel):
|
|
53 |
|
54 |
# Initialize conversation and model
|
55 |
conversation_bot = []
|
56 |
-
conversation =
|
57 |
model = genai.GenerativeModel("gemini-1.5-flash", system_instruction=conversation)
|
58 |
|
59 |
# Initialize speech recognizer
|
@@ -76,6 +76,8 @@ def get_gemini_completions(conversation: str) -> str:
|
|
76 |
@app.get("/init", response_model=ChatResponse, dependencies=[Depends(verify_api_key)])
|
77 |
async def initialize_chat():
|
78 |
global conversation_bot
|
|
|
|
|
79 |
introduction = get_gemini_completions(conversation)
|
80 |
conversation_bot = [Message(role="bot", content=introduction)]
|
81 |
return ChatResponse(
|
@@ -159,11 +161,11 @@ async def handle_feedback(
|
|
159 |
async def reset_conversation():
|
160 |
global conversation_bot, conversation
|
161 |
conversation_bot = []
|
162 |
-
conversation =
|
163 |
introduction = get_gemini_completions(conversation)
|
164 |
conversation_bot.append(Message(role="bot", content=introduction))
|
165 |
return {"status": "success", "message": "Conversation reset"}
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from pydantic import BaseModel
|
4 |
from typing import List, Optional
|
5 |
+
from helpmate_ai import get_system_msg, retreive_results, rerank_with_cross_encoder, generate_response
|
6 |
import google.generativeai as genai
|
7 |
import os
|
8 |
from dotenv import load_dotenv
|
|
|
53 |
|
54 |
# Initialize conversation and model
|
55 |
conversation_bot = []
|
56 |
+
conversation = get_system_msg()
|
57 |
model = genai.GenerativeModel("gemini-1.5-flash", system_instruction=conversation)
|
58 |
|
59 |
# Initialize speech recognizer
|
|
|
76 |
@app.get("/init", response_model=ChatResponse, dependencies=[Depends(verify_api_key)])
|
77 |
async def initialize_chat():
|
78 |
global conversation_bot
|
79 |
+
|
80 |
+
conversation = "Hi"
|
81 |
introduction = get_gemini_completions(conversation)
|
82 |
conversation_bot = [Message(role="bot", content=introduction)]
|
83 |
return ChatResponse(
|
|
|
161 |
async def reset_conversation():
|
162 |
global conversation_bot, conversation
|
163 |
conversation_bot = []
|
164 |
+
conversation = "Hi"
|
165 |
introduction = get_gemini_completions(conversation)
|
166 |
conversation_bot.append(Message(role="bot", content=introduction))
|
167 |
return {"status": "success", "message": "Conversation reset"}
|
168 |
|
169 |
+
if __name__ == "__main__":
|
170 |
+
import uvicorn
|
171 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
helpmate_ai.py
CHANGED
@@ -2,11 +2,11 @@
|
|
2 |
import pandas as pd
|
3 |
import chromadb
|
4 |
|
5 |
-
def
|
6 |
"""
|
7 |
Generate a response using GPT-3.5's ChatCompletion based on the user query and retrieved information.
|
8 |
"""
|
9 |
-
|
10 |
f"""
|
11 |
You are a helpful assistant in the insurance domain who can effectively answer user queries about insurance policies and documents.
|
12 |
The document name is 'Group Life Insurance Policy' and it contais information about 3 different insurance policies 'Member Life Insurance', 'Member Accidental Death and Dismemberment Insurance' and 'Dependent Life Insurance'.
|
@@ -46,14 +46,22 @@ def initialize_conversation():
|
|
46 |
6. If the provided excerpts do not fully answer the query, provide partial information and suggest which sections of the policy document the user should review for further details.
|
47 |
7. If no relevant information is found in the provided excerpts, respond with 'No relevant information found in the provided excerpts.'
|
48 |
|
49 |
-
|
50 |
"""
|
51 |
]
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Import the SentenceTransformer Embedding Function into chroma
|
59 |
from chromadb.utils import embedding_functions
|
|
|
2 |
import pandas as pd
|
3 |
import chromadb
|
4 |
|
5 |
+
def get_system_msg():
|
6 |
"""
|
7 |
Generate a response using GPT-3.5's ChatCompletion based on the user query and retrieved information.
|
8 |
"""
|
9 |
+
system_msg = [
|
10 |
f"""
|
11 |
You are a helpful assistant in the insurance domain who can effectively answer user queries about insurance policies and documents.
|
12 |
The document name is 'Group Life Insurance Policy' and it contais information about 3 different insurance policies 'Member Life Insurance', 'Member Accidental Death and Dismemberment Insurance' and 'Dependent Life Insurance'.
|
|
|
46 |
6. If the provided excerpts do not fully answer the query, provide partial information and suggest which sections of the policy document the user should review for further details.
|
47 |
7. If no relevant information is found in the provided excerpts, respond with 'No relevant information found in the provided excerpts.'
|
48 |
|
49 |
+
<When user says 'Hi' respond with a short welcome message which also has policy name and a smiley.>
|
50 |
"""
|
51 |
]
|
52 |
|
53 |
+
return system_msg
|
54 |
+
|
55 |
+
# def get_welcome_msg():
|
56 |
+
# """
|
57 |
+
# Generate a welcome msg.
|
58 |
+
# """
|
59 |
+
# messages = f"""
|
60 |
+
# Start the session with a short welcome message which also has policy name and a smiley.
|
61 |
+
# """
|
62 |
+
# introduction = [{"role": "user", "parts": messages}]
|
63 |
+
|
64 |
+
# return introduction
|
65 |
|
66 |
# Import the SentenceTransformer Embedding Function into chroma
|
67 |
from chromadb.utils import embedding_functions
|