Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +111 -0
- app_config.py +7 -0
- session_manager.py +8 -0
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from app_config import SYSTEM_PROMPT
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from pathlib import Path
|
6 |
+
import os
|
7 |
+
import session_manager
|
8 |
+
|
9 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
10 |
+
env_path = Path('.') / '.env'
|
11 |
+
load_dotenv(dotenv_path=env_path)
|
12 |
+
|
13 |
+
|
14 |
+
st.markdown(
|
15 |
+
"""
|
16 |
+
<style>
|
17 |
+
.st-emotion-cache-janbn0 {
|
18 |
+
flex-direction: row-reverse;
|
19 |
+
text-align: right;
|
20 |
+
}
|
21 |
+
.st-emotion-cache-1ec2a3d{
|
22 |
+
display: none;
|
23 |
+
}
|
24 |
+
</style>
|
25 |
+
""",
|
26 |
+
unsafe_allow_html=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
# Intialize chat history
|
30 |
+
print("SYSTEM MESSAGE")
|
31 |
+
if "messages" not in st.session_state:
|
32 |
+
st.session_state.messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
33 |
+
|
34 |
+
print("SYSTEM MODEL")
|
35 |
+
if "llm" not in st.session_state:
|
36 |
+
st.session_state.llm = ChatGroq(
|
37 |
+
model="llama-3.3-70b-versatile",
|
38 |
+
temperature=0,
|
39 |
+
max_tokens=None,
|
40 |
+
timeout=None,
|
41 |
+
max_retries=2,
|
42 |
+
api_key=str(os.getenv('GROQ_API'))
|
43 |
+
)
|
44 |
+
|
45 |
+
if "search_tool" not in st.session_state:
|
46 |
+
st.session_state.search_tool = GoogleSerperAPIWrapper(
|
47 |
+
serper_api_key=str(os.getenv('SERPER_API')))
|
48 |
+
|
49 |
+
|
50 |
+
def get_answer(query):
|
51 |
+
new_search_query = st.session_state.llm.invoke(
|
52 |
+
f"Convert below query to english for Ahmedabad Municipal Corporation (AMC) You just need to give translated query. Don't add any additional details.\n Query: {query}").content
|
53 |
+
search_result = st.session_state.search_tool.run(
|
54 |
+
f"{new_search_query} site:https://ahmedabadcity.gov.in/")
|
55 |
+
|
56 |
+
system_prompt = """You are a helpful assistance for The Ahmedabad Municipal Corporation (AMC). which asnwer user query from given context only. Output language should be as same as `original_query_from_user`.
|
57 |
+
context: {context}
|
58 |
+
original_query_from_user: {original_query}
|
59 |
+
query: {query}"""
|
60 |
+
|
61 |
+
return st.session_state.llm.invoke(system_prompt.format(context=search_result, query=new_search_query, original_query=query)).content
|
62 |
+
|
63 |
+
|
64 |
+
session_manager.set_session_state(st.session_state)
|
65 |
+
|
66 |
+
print("container")
|
67 |
+
# Display chat messages from history
|
68 |
+
st.markdown("<h1 style='text-align: center;'>AMC Bot</h1>", unsafe_allow_html=True)
|
69 |
+
container = st.container(height=700)
|
70 |
+
for message in st.session_state.messages:
|
71 |
+
if message["role"] != "system":
|
72 |
+
with container.chat_message(message["role"]):
|
73 |
+
if message['type'] == "table":
|
74 |
+
st.dataframe(message['content'].set_index(
|
75 |
+
message['content'].columns[0]))
|
76 |
+
elif message['type'] == "html":
|
77 |
+
st.markdown(message['content'], unsafe_allow_html=True)
|
78 |
+
else:
|
79 |
+
st.write(message["content"])
|
80 |
+
|
81 |
+
# When user gives input
|
82 |
+
if prompt := st.chat_input("Enter your query here... "):
|
83 |
+
with container.chat_message("user"):
|
84 |
+
st.write(prompt)
|
85 |
+
st.session_state.messages.append(
|
86 |
+
{"role": "user", "content": prompt, "type": "string"})
|
87 |
+
st.session_state.last_query = prompt
|
88 |
+
|
89 |
+
with container.chat_message("assistant"):
|
90 |
+
current_conversation = """"""
|
91 |
+
|
92 |
+
# if st.session_state.next_agent != "general_agent" and st.session_state.next_agent in st.session_state.agent_history:
|
93 |
+
for message in st.session_state.messages:
|
94 |
+
if message['role'] == 'user':
|
95 |
+
current_conversation += f"""user: {message['content']}\n"""
|
96 |
+
if message['role'] == 'assistant':
|
97 |
+
current_conversation += f"""ai: {message['content']}\n"""
|
98 |
+
|
99 |
+
current_conversation += f"""user: {prompt}\n"""
|
100 |
+
|
101 |
+
print("****************************************** Messages ******************************************")
|
102 |
+
print("messages", current_conversation)
|
103 |
+
print()
|
104 |
+
print()
|
105 |
+
response = get_answer(current_conversation)
|
106 |
+
print("******************************************************** Response ********************************************************")
|
107 |
+
print("MY RESPONSE IS:", response)
|
108 |
+
|
109 |
+
st.write(response)
|
110 |
+
st.session_state.messages.append(
|
111 |
+
{"role": "assistant", "content": response, "type": "string"})
|
app_config.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM_PROMPT = """You are a helpful assistance for The Ahmedabad Municipal Corporation (AMC). which asnwer user query from given context only. Output language should be as same as `original_query_from_user`.
|
2 |
+
context: {context}
|
3 |
+
original_query_from_user: {original_query}
|
4 |
+
query: {query}"""
|
5 |
+
|
6 |
+
MODEL = "llama-3.3-70b-versatile"
|
7 |
+
MAX_TOKENS = 4000
|
session_manager.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
session_state = None
|
2 |
+
|
3 |
+
def set_session_state(state):
|
4 |
+
global session_state
|
5 |
+
session_state = state
|
6 |
+
|
7 |
+
def get_session_state():
|
8 |
+
return session_state
|