Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from fastapi import FastAPI
|
4 |
+
|
5 |
+
# Initialize the summarization pipeline
|
6 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
7 |
+
|
8 |
+
# Define the summarization function
|
9 |
+
def summarize_text(input_text):
|
10 |
+
summary = summarizer(input_text, max_length=130, min_length=30, do_sample=False)
|
11 |
+
return summary[0]['summary_text']
|
12 |
+
|
13 |
+
# Create the Gradio app
|
14 |
+
app = gr.Interface(
|
15 |
+
fn=summarize_text,
|
16 |
+
inputs=gr.Textbox(lines=10, label="Input Text"),
|
17 |
+
outputs=gr.Textbox(label="Summarized Text"),
|
18 |
+
title="Text Summarization",
|
19 |
+
description="Enter a block of text to summarize it using the BART model fine-tuned on CNN/Daily Mail."
|
20 |
+
)
|
21 |
+
|
22 |
+
# Mount the Gradio app on FastAPI
|
23 |
+
fastapi_app = FastAPI()
|
24 |
+
fastapi_app.mount("/", app)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
app.launch()
|