|
import tensorflow as tf |
|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
|
|
new_model = tf.keras.models.load_model('breedclassification.h5') |
|
|
|
def predict_classes(link): |
|
img = cv2.resize(link,(224,224)) |
|
img = img/255 |
|
img = img.reshape(-1,224,224,3) |
|
pred = np.round(new_model.predict(img)).argmax(axis = 1) |
|
dic = {0: 'Herding breed', 1: 'Hound breed', 2: 'Non sporting breed', 3: 'Terrior breed', 4:'working breed', 5: 'sporting breed', 6: 'toy breed'} |
|
print(dic.get(int(pred))) |
|
a = dic.get(int(pred)) |
|
return a |
|
|
|
label = gr.outputs.Label(num_top_classes=7) |
|
gr.Interface(fn=predict_classes, inputs='image', outputs=label,interpretation='default', title = 'Breed Classification detection ', description = 'It will classify 7 different species: You can drage the images from google. 1. Terrier 2. Toy 3. Working 4. Sporting 5. Hound 6. Herding 7. Non sporting Group ').launch() |
|
|