Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -1,110 +1,68 @@
|
|
1 |
import logging
|
2 |
-
import
|
3 |
-
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
-
logging.basicConfig(
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
"""
|
18 |
try:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, framework="pt")
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
24 |
-
|
25 |
-
# Create the text generation pipeline
|
26 |
-
generator = pipeline(
|
27 |
-
"text2text-generation",
|
28 |
-
model=model,
|
29 |
-
tokenizer=tokenizer,
|
30 |
-
framework="pt", # Specify PyTorch framework
|
31 |
-
max_length=512,
|
32 |
-
num_return_sequences=1
|
33 |
)
|
34 |
-
|
35 |
-
|
|
|
36 |
except Exception as e:
|
37 |
-
|
38 |
-
return
|
39 |
-
|
40 |
-
# Load the generator at startup
|
41 |
-
generator = load_model()
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
Generate detailed API test cases using a language model.
|
46 |
-
"""
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# Parse headers and payload as JSON
|
55 |
-
try:
|
56 |
-
headers_dict = json.loads(headers) if headers.strip() else {}
|
57 |
-
payload_dict = json.loads(payload) if payload.strip() else {}
|
58 |
-
except json.JSONDecodeError as e:
|
59 |
-
return f"JSON Parsing Error: {e}"
|
60 |
-
|
61 |
-
# Prompt for the model
|
62 |
-
prompt = f"""
|
63 |
-
Generate comprehensive API test cases for the following:
|
64 |
-
|
65 |
-
HTTP Method: {method}
|
66 |
-
API URL: {url}
|
67 |
-
Headers: {json.dumps(headers_dict, indent=2)}
|
68 |
-
Payload: {json.dumps(payload_dict, indent=2)}
|
69 |
-
|
70 |
-
Requirements:
|
71 |
-
- Include Happy Path, Negative, and Edge Cases.
|
72 |
-
- Provide validation steps and expected results.
|
73 |
-
"""
|
74 |
-
|
75 |
-
# Ensure model is loaded
|
76 |
-
if generator is None:
|
77 |
-
return "Error: No model is available for test case generation."
|
78 |
-
|
79 |
-
# Generate test cases
|
80 |
-
response = generator(prompt, max_length=500, num_return_sequences=1)
|
81 |
-
generated_text = response[0]['generated_text']
|
82 |
-
|
83 |
-
logger.info("Successfully generated test cases.")
|
84 |
-
return generated_text
|
85 |
-
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
return
|
89 |
|
90 |
-
# Gradio
|
91 |
-
|
92 |
-
fn=
|
93 |
inputs=[
|
94 |
-
gr.Textbox(label="
|
95 |
-
gr.Textbox(label="
|
96 |
-
gr.Textbox(label="Headers (JSON format)"
|
97 |
-
gr.Textbox(label="Payload (JSON format)"
|
98 |
],
|
99 |
outputs="text",
|
100 |
-
title="API Test Case Generator"
|
101 |
-
description="Generate detailed API test cases using AI models."
|
102 |
)
|
103 |
|
104 |
-
#
|
105 |
if __name__ == "__main__":
|
106 |
try:
|
107 |
-
|
108 |
-
|
|
|
109 |
except Exception as e:
|
110 |
-
|
|
|
1 |
import logging
|
2 |
+
from transformers import pipeline
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Set up logging
|
6 |
+
logging.basicConfig(
|
7 |
+
filename="app.log",
|
8 |
+
level=logging.INFO,
|
9 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
10 |
+
)
|
11 |
|
12 |
+
# Load the generative AI model
|
13 |
+
logging.info("Loading the Hugging Face model...")
|
14 |
+
try:
|
15 |
+
model = pipeline("text2text-generation", model="google/flan-t5-large") # Replace with your chosen model
|
16 |
+
logging.info("Model loaded successfully.")
|
17 |
+
except Exception as e:
|
18 |
+
logging.error(f"Error loading the model: {e}")
|
19 |
+
raise
|
20 |
|
21 |
+
# Function to generate test cases
|
22 |
+
def generate_test_cases(api_info):
|
23 |
+
logging.info(f"Generating test cases for API info: {api_info}")
|
|
|
24 |
try:
|
25 |
+
prompt = (
|
26 |
+
f"Generate API test cases for the following API:\n\n{api_info}\n\n"
|
27 |
+
f"Test cases should include:\n- Happy path\n- Negative tests\n- Edge cases"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
+
result = model(prompt, max_length=512, num_return_sequences=1)
|
30 |
+
logging.info(f"Test cases generated successfully.")
|
31 |
+
return result[0]['generated_text']
|
32 |
except Exception as e:
|
33 |
+
logging.error(f"Error generating test cases: {e}")
|
34 |
+
return "An error occurred while generating test cases."
|
|
|
|
|
|
|
35 |
|
36 |
+
# Process input and generate output
|
37 |
+
def process_input(url, method, headers, payload):
|
|
|
|
|
38 |
try:
|
39 |
+
logging.info("Received user input.")
|
40 |
+
api_info = f"URL: {url}\nMethod: {method}\nHeaders: {headers}\nPayload: {payload}"
|
41 |
+
logging.debug(f"Formatted API info: {api_info}")
|
42 |
+
test_cases = generate_test_cases(api_info)
|
43 |
+
return test_cases
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
+
logging.error(f"Error processing input: {e}")
|
46 |
+
return "An error occurred. Please check the input format and try again."
|
47 |
|
48 |
+
# Define Gradio interface
|
49 |
+
interface = gr.Interface(
|
50 |
+
fn=process_input,
|
51 |
inputs=[
|
52 |
+
gr.Textbox(label="API URL"),
|
53 |
+
gr.Textbox(label="HTTP Method"),
|
54 |
+
gr.Textbox(label="Headers (JSON format)"),
|
55 |
+
gr.Textbox(label="Payload (JSON format)"),
|
56 |
],
|
57 |
outputs="text",
|
58 |
+
title="API Test Case Generator"
|
|
|
59 |
)
|
60 |
|
61 |
+
# Launch Gradio app
|
62 |
if __name__ == "__main__":
|
63 |
try:
|
64 |
+
logging.info("Starting the Gradio app...")
|
65 |
+
interface.launch()
|
66 |
+
logging.info("Gradio app launched successfully.")
|
67 |
except Exception as e:
|
68 |
+
logging.error(f"Error launching the Gradio app: {e}")
|