File size: 3,963 Bytes
ad748cf
1a5c0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad748cf
1a5c0c8
ad748cf
1a5c0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce2a2c
ad748cf
 
1a5c0c8
 
 
 
 
 
ad748cf
 
1a5c0c8
 
 
ad748cf
1a5c0c8
 
ad748cf
1a5c0c8
ad748cf
 
 
 
1a5c0c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# --- Model Initialization ---

# Paths for tokenizer and your model checkpoint
tokenizer_path = "facebook/opt-1.3b"
model_path = "transfer_learning_therapist.pth"

# Load tokenizer and set pad token if needed
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the base model and then update with your checkpoint
model = AutoModelForCausalLM.from_pretrained(tokenizer_path)
checkpoint = torch.load(model_path, map_location=device)
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in checkpoint['model_state_dict'].items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.to(device)
model.eval()

# --- Inference Function ---

def generate_response(prompt, max_new_tokens=150, temperature=0.7, top_p=0.9, repetition_penalty=1.2):
    """Generates a response from your model based on the prompt."""
    model.eval()
    model.config.use_cache = True

    prompt = prompt.strip()
    if not prompt:
        return "Please provide a valid input."

    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    try:
        with torch.no_grad():
            outputs = model.generate(
                inputs.input_ids,
                attention_mask=inputs.attention_mask,
                max_new_tokens=max_new_tokens,
                temperature=temperature,
                top_p=top_p,
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                repetition_penalty=repetition_penalty,
                num_beams=1,             # greedy decoding
                no_repeat_ngram_size=3,  # avoid repeated phrases
            )
    except Exception as e:
        return f"Error generating response: {e}"
    finally:
        model.config.use_cache = False
    
    full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    # If your prompt is formatted with role markers (e.g., "Therapist:"), extract only that part:
    if "Therapist:" in full_response:
        therapist_response = full_response.split("Therapist:")[-1].strip()
    else:
        therapist_response = full_response.strip()
    return therapist_response

# --- Gradio Interface Function ---

def respond(message, history, system_message, max_tokens, temperature, top_p):
    """
    Build the conversation context by combining the system message and the dialogue history,
    then generate a new response from the model.
    """
    # Create a conversation prompt with your desired role labels.
    conversation = f"System: {system_message}\n"
    for user_msg, assistant_msg in history:
        conversation += f"Human: {user_msg}\nTherapist: {assistant_msg}\n"
    conversation += f"Human: {message}\nTherapist:"
    
    response = generate_response(
        conversation,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )
    
    history.append((message, response))
    return history, history

# --- Gradio ChatInterface Setup ---

demo = gr.ChatInterface(
    fn=respond,
    title="MindfulAI Chat",
    description="Chat with MindfulAI – an AI Therapist powered by your custom model.",
    additional_inputs=[
        gr.Textbox(value="You are a friendly AI Therapist.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)

if __name__ == "__main__":
    demo.launch()