Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
-
#
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# Load tokenizer and set pad token if needed
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
13 |
-
if tokenizer.pad_token is None:
|
14 |
-
tokenizer.pad_token = tokenizer.eos_token
|
15 |
-
|
16 |
-
# Set device
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
print(f"Using device: {device}")
|
19 |
-
|
20 |
-
# Load the base model and then update with your checkpoint
|
21 |
-
model = AutoModelForCausalLM.from_pretrained(tokenizer_path)
|
22 |
-
checkpoint = torch.load(model_path, map_location=device)
|
23 |
-
model_dict = model.state_dict()
|
24 |
-
pretrained_dict = {k: v for k, v in checkpoint['model_state_dict'].items() if k in model_dict}
|
25 |
-
model_dict.update(pretrained_dict)
|
26 |
-
model.load_state_dict(model_dict)
|
27 |
-
model.to(device)
|
28 |
-
model.eval()
|
29 |
-
|
30 |
-
# --- Inference Function ---
|
31 |
-
|
32 |
-
def generate_response(prompt, max_new_tokens=150, temperature=0.7, top_p=0.9, repetition_penalty=1.2):
|
33 |
-
"""Generates a response from your model based on the prompt."""
|
34 |
-
model.eval()
|
35 |
-
model.config.use_cache = True
|
36 |
-
|
37 |
-
prompt = prompt.strip()
|
38 |
-
if not prompt:
|
39 |
-
return "Please provide a valid input."
|
40 |
-
|
41 |
-
# Tokenize the input prompt
|
42 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
43 |
-
|
44 |
-
try:
|
45 |
-
with torch.no_grad():
|
46 |
-
outputs = model.generate(
|
47 |
-
inputs.input_ids,
|
48 |
-
attention_mask=inputs.attention_mask,
|
49 |
-
max_new_tokens=max_new_tokens,
|
50 |
-
temperature=temperature,
|
51 |
-
top_p=top_p,
|
52 |
-
do_sample=True,
|
53 |
-
pad_token_id=tokenizer.pad_token_id,
|
54 |
-
eos_token_id=tokenizer.eos_token_id,
|
55 |
-
repetition_penalty=repetition_penalty,
|
56 |
-
num_beams=1, # greedy decoding
|
57 |
-
no_repeat_ngram_size=3, # avoid repeated phrases
|
58 |
-
)
|
59 |
-
except Exception as e:
|
60 |
-
return f"Error generating response: {e}"
|
61 |
-
finally:
|
62 |
-
model.config.use_cache = False
|
63 |
-
|
64 |
-
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
-
# If your prompt is formatted with role markers (e.g., "Therapist:"), extract only that part:
|
66 |
-
if "Therapist:" in full_response:
|
67 |
-
therapist_response = full_response.split("Therapist:")[-1].strip()
|
68 |
-
else:
|
69 |
-
therapist_response = full_response.strip()
|
70 |
-
return therapist_response
|
71 |
-
|
72 |
-
# --- Gradio Interface Function ---
|
73 |
-
|
74 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
75 |
-
"""
|
76 |
-
Build the conversation context by combining the system message and the dialogue history,
|
77 |
-
then generate a new response from the model.
|
78 |
-
"""
|
79 |
-
# Create a conversation prompt with your desired role labels.
|
80 |
-
conversation = f"System: {system_message}\n"
|
81 |
for user_msg, assistant_msg in history:
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
temperature=temperature,
|
89 |
top_p=top_p,
|
90 |
-
)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# --- Gradio ChatInterface Setup ---
|
96 |
|
|
|
97 |
demo = gr.ChatInterface(
|
98 |
fn=respond,
|
99 |
title="MindfulAI Chat",
|
100 |
-
description="Chat with MindfulAI –
|
101 |
additional_inputs=[
|
102 |
-
gr.Textbox(value="You are a friendly
|
103 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
104 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
105 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
106 |
],
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
+
# Initialize the InferenceClient with your custom model hosted on Hugging Face.
|
5 |
+
client = InferenceClient(model="pro-grammer/MindfulAI")
|
6 |
|
7 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
8 |
+
# Build conversation context
|
9 |
+
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
for user_msg, assistant_msg in history:
|
11 |
+
if user_msg:
|
12 |
+
messages.append({"role": "user", "content": user_msg})
|
13 |
+
if assistant_msg:
|
14 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
15 |
+
messages.append({"role": "user", "content": message})
|
16 |
+
|
17 |
+
response = ""
|
18 |
+
# Use the chat_completion method to stream the model's response
|
19 |
+
for message in client.chat_completion(
|
20 |
+
messages,
|
21 |
+
max_tokens=max_tokens,
|
22 |
+
stream=True,
|
23 |
temperature=temperature,
|
24 |
top_p=top_p,
|
25 |
+
):
|
26 |
+
token = message.choices[0].delta.content
|
27 |
+
response += token
|
28 |
+
yield response
|
|
|
|
|
29 |
|
30 |
+
# Customize the ChatInterface with additional input controls
|
31 |
demo = gr.ChatInterface(
|
32 |
fn=respond,
|
33 |
title="MindfulAI Chat",
|
34 |
+
description="Chat with MindfulAI – your hosted AI Therapist.",
|
35 |
additional_inputs=[
|
36 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
37 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
38 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
39 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
40 |
],
|