Spaces:
Runtime error
Runtime error
File size: 5,221 Bytes
295a0ef 09d8aa9 bdaab11 295a0ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import json
import os
import re
import librosa
import numpy as np
import torch
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from text.symbols import symbols
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def create_tts_fn(net_g, hps, speaker_ids):
def tts_fn(text, speaker, speed):
if limitation:
text_len = len(text)
max_len = 700
if text_len > max_len:
return "Error: Text is too long", None
speaker_id = speaker_ids[speaker]
stn_tst = get_text(text, hps)
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
del stn_tst, x_tst, x_tst_lengths, sid
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
css = """
#advanced-btn {
color: white;
border-color: black;
background: black;
font-size: .7rem !important;
line-height: 19px;
margin-top: 24px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
"""
if __name__ == '__main__':
models_tts = []
name = 'AronaTTS'
lang = 'ζ₯ζ¬θͺ (Japanese)'
example = 'ε
ηγδ»ζ₯γ―倩ζ°γζ¬ε½γ«γγγ§γγγ'
config_path = f"pretrained_model/arona_ms_istft_vits.json"
model_path = f"pretrained_model/arona_ms_istft_vits.pth"
cover_path = f"pretrained_model/cover.png"
hps = utils.get_hparams_from_file(config_path)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).cuda()
_ = net_g.eval()
utils.load_checkpoint(model_path, net_g, None)
net_g.eval()
speaker_ids = [0]
speakers = [name]
t = 'vits'
models_tts.append((name, cover_path, speakers, lang, example,
hps.symbols, create_tts_fn(net_g, hps, speaker_ids)))
app = gr.Blocks(css=css)
with app:
gr.Markdown("# BlueArchive AronaTTS Using VITS Model\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=openduckparty.AronaTTS)\n\n")
for i, (name, cover_path, speakers, lang, example, symbols, tts_fn
) in enumerate(models_tts):
with gr.Column():
gr.Markdown(f"## {name}\n\n"
f"![cover](file/{cover_path})\n\n"
f"lang: {lang}")
tts_input1 = gr.TextArea(label="Text (700 words limitation)", value=example,
elem_id=f"tts-input{i}")
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
type="index", value=speakers[0])
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.1, maximum=2, step=0.1)
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
[tts_output1, tts_output2])
_js=f"""
(i,phonemes) => {{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea");
let startPos = text_input.selectionStart;
let endPos = text_input.selectionEnd;
let oldTxt = text_input.value;
let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos);
text_input.value = result;
let x = window.scrollX, y = window.scrollY;
text_input.focus();
text_input.selectionStart = startPos + phonemes[i].length;
text_input.selectionEnd = startPos + phonemes[i].length;
text_input.blur();
window.scrollTo(x, y);
return [];
}}"""
app.queue(concurrency_count=3).launch(show_api=False) |