project21 commited on
Commit
c41929b
·
verified ·
1 Parent(s): 2d2b142

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from tensorflow.keras.utils import img_to_array,load_img
3
+ from keras.models import load_model
4
+ import numpy as np
5
+
6
+ # Load the pre-trained model from the local path
7
+ model_path = 'cherry.h5'
8
+ model = load_model(model_path) # Load the model here
9
+
10
+ def predict_disease(image_file, model, all_labels):
11
+
12
+ try:
13
+ # Load and preprocess the image
14
+ img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
15
+ img_array = img_to_array(img)
16
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
17
+ img_array = img_array / 255.0 # Normalize the image
18
+
19
+ # Predict the class
20
+ predictions = model.predict(img_array) # Use the loaded model here
21
+ predicted_class = np.argmax(predictions[0])
22
+
23
+ # Get the predicted class label
24
+ predicted_label = all_labels[predicted_class]
25
+
26
+ # Print the predicted label to the console
27
+
28
+ if predicted_label=='Cherry Healthy':
29
+ predicted_label = predicted_label = """<h3 align="center">Cherry Healthy</h3><br><br>
30
+ <center>No need use Pesticides</center>"""
31
+ elif predicted_label=='Cherry Powdery Mildew':
32
+ predicted_label = """
33
+ <style>
34
+ li{
35
+ font-size: 15px;
36
+ margin-left: 90px;
37
+ margin-top: 15px;
38
+ margin-bottom: 15px;
39
+ }
40
+ h4{
41
+ font-size: 17px;
42
+ margin-top: 15px;
43
+ }
44
+ h4:hover{
45
+ cursor: pointer;
46
+ }
47
+
48
+ h3:hover{
49
+ cursor: pointer;
50
+ color: blue;
51
+ transform: scale(1.3);
52
+ }
53
+ .note{
54
+ text-align: center;
55
+ font-size: 16px;
56
+ }
57
+ p{
58
+ font-size: 13px;
59
+ text-align: center;
60
+ }
61
+
62
+ </style>
63
+ <h3><center><b>Cherry Powdery Mildew</b></center></h3>
64
+ <h4>PESTICIDES TO BE USED:</h4>
65
+ <ul>
66
+ <li>1. Chlorothalonil (Daconil)</li>
67
+ <li>2. Mancozeb (Dithane)</li>
68
+ <li>3. Propiconazole</li>
69
+ <li>4. Azoxystrobin (Heritage)</li>
70
+ <li>5. Pyraclostrobin (Cabrio)</li>
71
+
72
+
73
+ </ul>
74
+ <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
75
+ <p>Be sure to follow local regulations and guidelines for application</p>
76
+
77
+
78
+ """
79
+
80
+
81
+
82
+
83
+ else:
84
+ predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
85
+ """
86
+
87
+ return predicted_label
88
+
89
+
90
+ except Exception as e:
91
+ print(f"Error: {e}")
92
+ return None
93
+
94
+ # List of class labels
95
+ all_labels = [
96
+ 'Cherry Powdery Mildew',
97
+ 'Cherry Healthy'
98
+ ]
99
+
100
+ # Define the Gradio interface
101
+ def gradio_predict(image_file):
102
+ return predict_disease(image_file, model, all_labels) # Pass the model to the function
103
+
104
+ # Create a Gradio interface
105
+ gr_interface = gr.Interface(
106
+ fn=gradio_predict, # Function to call for predictions
107
+ inputs=gr.Image(type="filepath"), # Upload image as file path
108
+ outputs="html", # Output will be the class label as text
109
+ title="Cherry Disease Predictor",
110
+ description="Upload an image of a plant to predict the disease.",
111
+ )
112
+
113
+ # Launch the Gradio app
114
+ gr_interface.launch(share=True)