Spaces:
Runtime error
Runtime error
File size: 1,409 Bytes
2ad1bab e25282d 292db1c 2ad1bab 292db1c 0ca76da 292db1c eee28ed 292db1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from AinaTheme import AinaGradioTheme
from transformers import pipeline
# gr.load("projecte-aina/multiner_ceil",src="models",aggregation_strategy="first", **AinaGradioTheme().get_kwargs()).launch()
import gradio as gr
ner_pipeline = pipeline("token-classification", model="projecte-aina/multiner_ceil")
# examples = [
# "Does Chicago have any stores and does Joe live here?",
# ]
def ner(text):
output = ner_pipeline(text)
return {"text": text, "entities": output}
demo = gr.Interface(
ner,
gr.Textbox(placeholder="Enter sentence here..."),
gr.HighlightedText(),
**AinaGradioTheme().get_kwargs(),
flagging_options=None,
article="""
Multiner is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa] model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
It has been trained with a dataset (CEIL: Catalan Entity Identification and Linking ) that contains 9 main types and 52 subtypes on all kinds of short texts, with almost 59K documents.
Aquest resultat ha estat impulsat i finançat per la Generalitat de Catalunya mitjançant el projecte Aina (https://projecteaina.cat/).
""")
demo.launch() |