multiner_demo / app.py
PaulNdrei's picture
Update app.py
ecf1622
raw
history blame
1.23 kB
import gradio as gr
from AinaTheme import AinaGradioTheme
from transformers import pipeline
import gradio as gr
ner_pipeline = pipeline("token-classification", model="projecte-aina/multiner_ceil",aggregation_strategy="first")
def ner(text):
output = ner_pipeline(text)
return {"text": text, "entities": output}
demo = gr.Interface(
ner,
gr.Textbox(placeholder="Enter sentence here..."),
gr.HighlightedText(),
**AinaGradioTheme().get_kwargs(),
flagging_options=None,
article="""
Multiner is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa] model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
It has been trained with a dataset (CEIL: Catalan Entity Identification and Linking ) that contains 9 main types and 52 subtypes on all kinds of short texts, with almost 59K documents.
Aquest resultat ha estat impulsat i finançat per la Generalitat de Catalunya mitjançant el projecte Aina (https://projecteaina.cat/).
""")
demo.launch()