acumplid commited on
Commit
f7a2a3f
·
1 Parent(s): 28d06a9

Replaced Interface by blocks demo

Browse files
Files changed (1) hide show
  1. app.py +100 -17
app.py CHANGED
@@ -2,23 +2,106 @@ import gradio as gr
2
  from AinaTheme import AinaGradioTheme
3
  from transformers import pipeline
4
  import gradio as gr
 
 
 
 
 
 
 
5
 
6
  ner_pipeline = pipeline("token-classification", model="projecte-aina/multiner_ceil",aggregation_strategy="first")
7
 
8
- def ner(text):
9
- output = ner_pipeline(text)
10
- return {"text": text, "entities": output}
11
-
12
- demo = gr.Interface(
13
- ner,
14
- gr.Textbox(placeholder="Enter sentence here..."),
15
- gr.HighlightedText(),
16
- **AinaGradioTheme().get_kwargs(),
17
- flagging_options=None,
18
- article="""
19
- Multiner is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa] model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
20
- It has been trained with a dataset (CEIL: Catalan Entity Identification and Linking ) that contains 9 main types and 52 subtypes on all kinds of short texts, with almost 59K documents.
21
- Aquest resultat ha estat impulsat i finançat per la Generalitat de Catalunya mitjançant el projecte Aina (https://projecteaina.cat/).
22
- """)
23
-
24
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from AinaTheme import AinaGradioTheme
3
  from transformers import pipeline
4
  import gradio as gr
5
+ from gradio.components import Textbox, Button, HighlightedText, Markdown
6
+
7
+ import os
8
+ from dotenv import load_dotenv
9
+ load_dotenv()
10
+
11
+ MAX_INPUT_CHARACTERS= int(os.environ.get("MAX_INPUT_CHARACTERS", default=1000))
12
 
13
  ner_pipeline = pipeline("token-classification", model="projecte-aina/multiner_ceil",aggregation_strategy="first")
14
 
15
+ def submit_input(text):
16
+ if text.strip() == "":
17
+ gr.Warning('Not possible to inference an empty input')
18
+ return None
19
+
20
+ model_output = ner_pipeline(text)
21
+
22
+ if model_output is None:
23
+ gr.Warning('Inference endpoint is not available right now. Please try again later.')
24
+
25
+ return {"text": text, "entities": model_output}
26
+
27
+ def check_max_characters(text, max_char):
28
+ if len(text.strip()) > int(max_char):
29
+ return gr.update(interactive = True), gr.update(interactive = False)
30
+ return gr.update(interactive = True), gr.update(interactive = True)
31
+
32
+ def clear():
33
+ return (
34
+ None,
35
+ None,
36
+ )
37
+
38
+ with gr.Blocks(**AinaGradioTheme().get_kwargs()) as demo:
39
+ with gr.Row():
40
+ with gr.Column():
41
+ gr.Markdown(
42
+ """ Multiner is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa] model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
43
+ It has been trained with a dataset (CEIL: Catalan Entity Identification and Linking ) that contains 9 main types and 52 subtypes on all kinds of short texts, with almost 59K documents.
44
+ This result has been driven and funded by the Government of Catalonia through the [Aina](https://projecteaina.cat/)
45
+ """
46
+ )
47
+
48
+ with gr.Row( equal_height=False):
49
+ with gr.Column(variant="panel"):
50
+ placeholder_max_characters = Textbox(
51
+ visible=False,
52
+ interactive=False,
53
+ value= MAX_INPUT_CHARACTERS
54
+ )
55
+ input_ = Textbox(
56
+ lines=8,
57
+ label="Input",
58
+ placeholder="e.g. Enter sentence here"
59
+ )
60
+ with gr.Row(variant="panel", equal_height=True):
61
+ gr.HTML("""<span id="countertext" style="display: flex; justify-content: start; color:#ef4444; font-weight: bold;"></span>""")
62
+ gr.HTML(f"""<span id="counter" style="display: flex; justify-content: end;"> <span id="inputlenght">0</span>&nbsp;/&nbsp;{MAX_INPUT_CHARACTERS}</span>""")
63
+
64
+
65
+ with gr.Column(variant="panel"):
66
+ output = HighlightedText(
67
+ container=True,
68
+ label="Output",
69
+ )
70
+ with gr.Row(variant="panel"):
71
+ clear_btn = Button(
72
+ "Clear",
73
+ )
74
+ submit_btn = Button(
75
+ "Submit",
76
+ variant="primary",
77
+ )
78
+
79
+
80
+ input_.change(
81
+ fn=check_max_characters,
82
+ inputs=[input_, placeholder_max_characters],
83
+ outputs=[clear_btn, submit_btn]
84
+ )
85
+
86
+ input_.change(fn=None, inputs=[input_, placeholder_max_characters], _js="""(i, m) => {
87
+ document.getElementById('countertext').textContent = i.length > m && 'Max length ' + m + ' characters. ' || ''
88
+ document.getElementById('inputlenght').textContent = i.length + ' '
89
+ document.getElementById('inputlenght').style.color = (i.length > m) ? "#ef4444" : "";
90
+ }""")
91
+
92
+ clear_btn.click(
93
+ fn=clear,
94
+ inputs=[],
95
+ outputs=[input_, output],
96
+ queue=False
97
+ )
98
+
99
+ submit_btn.click(
100
+ fn=submit_input,
101
+ inputs=[input_],
102
+ outputs=[output]
103
+ )
104
+
105
+ if __name__ == "__main__":
106
+ demo.queue(concurrency_count=1, api_open=False)
107
+ demo.launch(show_api=False)