import gradio as gr from AinaTheme import AinaGradioTheme from transformers import pipeline import gradio as gr ner_pipeline = pipeline("token-classification", model="projecte-aina/multiner_ceil",aggregation_strategy="first") def ner(text): output = ner_pipeline(text) return {"text": text, "entities": output} demo = gr.Interface( ner, gr.Textbox(placeholder="Enter sentence here..."), gr.HighlightedText(), **AinaGradioTheme().get_kwargs(), flagging_options=None, article=""" Multiner is a Named Entity Recognition (NER) model for the Catalan language fine-tuned from the [BERTa] model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details). It has been trained with a dataset (CEIL: Catalan Entity Identification and Linking ) that contains 9 main types and 52 subtypes on all kinds of short texts, with almost 59K documents. Aquest resultat ha estat impulsat i finançat per la Generalitat de Catalunya mitjançant el projecte Aina (https://projecteaina.cat/). """) demo.launch()