{ "run_name": "hifigan", "run_description": "universal hifigan trained on LibriTTS with no spectrogram normalization and using log() for scaling instead of log10()", // AUDIO PARAMETERS "audio":{ "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. "win_length": 1024, // stft window length in ms. "hop_length": 256, // stft window hop-lengh in ms. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. // Audio processing parameters "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. "log_func": "np.log", // Silence trimming "do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) "trim_db": 60, // threshold for timming silence. Set this according to your dataset. // MelSpectrogram parameters "num_mels": 80, // size of the mel spec frame. "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! "spec_gain": 1.0, // scaler value appplied after log transform of spectrogram. // Normalization parameters "signal_norm": false, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. "min_level_db": -100, // lower bound for normalization "symmetric_norm": true, // move normalization to range [-1, 1] "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored }, // DISTRIBUTED TRAINING "distributed":{ "backend": "nccl", "url": "tcp:\/\/localhost:54324" }, // MODEL PARAMETERS "use_pqmf": false, // LOSS PARAMETERS "use_stft_loss": false, "use_subband_stft_loss": false, "use_mse_gan_loss": true, "use_hinge_gan_loss": false, "use_feat_match_loss": true, // use only with melgan discriminators "use_l1_spec_loss": true, // loss weights "stft_loss_weight": 0, "subband_stft_loss_weight": 0, "mse_G_loss_weight": 1, "hinge_G_loss_weight": 0, "feat_match_loss_weight": 10, "l1_spec_loss_weight": 45, // multiscale stft loss parameters // "stft_loss_params": { // "n_ffts": [1024, 2048, 512], // "hop_lengths": [120, 240, 50], // "win_lengths": [600, 1200, 240] // }, "l1_spec_loss_params": { "use_mel": true, "sample_rate": 16000, "n_fft": 1024, "hop_length": 256, "win_length": 1024, "n_mels": 80, "mel_fmin": 0.0, "mel_fmax": null }, "target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch // DISCRIMINATOR "discriminator_model": "hifigan_discriminator", //"discriminator_model_params":{ // "peroids": [2, 3, 5, 7, 11], // "base_channels": 16, // "max_channels":512, // "downsample_factors":[4, 4, 4] //}, "steps_to_start_discriminator": 0, // steps required to start GAN trainining.1 // GENERATOR "generator_model": "hifigan_generator", "generator_model_params": { "resblock_type": "1", "upsample_factors": [8,8,2,2], "upsample_kernel_sizes": [16,16,4,4], "upsample_initial_channel": 128, "resblock_kernel_sizes": [3,7,11], "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]] }, // DATASET "data_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/vo_voice_quality_transformation/", "feature_path": null, // "feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/", "seq_len": 8192, "pad_short": 2000, "conv_pad": 0, "use_noise_augment": false, "use_cache": true, "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. // TRAINING "batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. // VALIDATION "run_eval": true, "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. // OPTIMIZER "epochs": 10000, // total number of epochs to train. "wd": 0.0, // Weight decay weight. "gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0 "disc_clip_grad": -1, // Discriminator gradient clipping threshold. // "lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate // "lr_scheduler_gen_params": { // "gamma": 0.999, // "last_epoch": -1 // }, // "lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate // "lr_scheduler_disc_params": { // "gamma": 0.999, // "last_epoch": -1 // }, "lr_gen": 0.00001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_disc": 0.00001, // TENSORBOARD and LOGGING "print_step": 25, // Number of steps to log traning on console. "print_eval": false, // If True, it prints loss values for each step in eval run. "save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints. "checkpoint": true, // If true, it saves checkpoints per "save_step" "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. // DATA LOADING "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes. "eval_split_size": 10, // PATHS "output_path": "/home/erogol/gdrive/Trainings/sam/" }