Glainez's picture
correct parsing input params
9ba9174
raw
history blame
5.26 kB
import gradio as gr
from pyzbar.pyzbar import decode
from lambdas import upload_models, predict
import base64
from io import BytesIO, StringIO
from PIL import Image
import pandas as pd
import os.path
import numpy as np
DEBUG = True
prefer_frontal_cam_html = """
<script>
const originalGetUserMedia = navigator.mediaDevices.getUserMedia.bind(navigator.mediaDevices);
navigator.mediaDevices.getUserMedia = (constraints) => {
if (!constraints.video.facingMode) {
constraints.video.facingMode = {ideal: "environment"};
}
return originalGetUserMedia(constraints);
};
</script>
"""
config = {'possible_shifts': {'No shifts': 0}, 'possible_modes': ["waste"]}
def login(username, password) -> bool:
# TODO from username and password get restaurant_id
if os.path.isfile('credentials.csv'):
df = pd.read_csv('credentials.csv')
else:
s = os.environ.get('CREDENTIALS')
df = pd.read_csv(StringIO(s))
if not len(df):
return False
df = df.replace({np.nan: None})
for idx, row in df.iterrows():
if row['username'] == username and row['password'] == password:
restaurant_id = int(row['restaurant_id'])
restaurant_name = str(row['restaurant_name'])
mode = 'waste'
possible_modes = str(row.get('modes')).split(':')
possible_shifts = {i.split(':')[0]: i.split(':')[1] for i in str(row.get('shifts')).split('-')} \
if row.get('shifts') else {'no shift': None}
config_aux = {'restaurant_id': restaurant_id,
'restaurant_name': restaurant_name,
'mode': mode,
'possible_modes': possible_modes,
'possible_shifts': possible_shifts,
}
config.update(config_aux)
return True
return False
def start_app(shift_id, mode):
try:
config_aux = {'shift_id': shift_id,
'mode': mode}
config.update(config_aux)
gr.Info('Loading models', )
status_code, r = upload_models(**config)
if status_code in (201, 200, 204):
gr.Info('Models Correctly Loaded. Ready to predict')
else:
raise gr.Error(f'Error loading the models: {r}')
config.update(r)
except Exception as e:
raise gr.Error(f'Error Uploading the models. \n {e}')
def predict_app(image, patient_id):
buffered = BytesIO()
image.save(buffered, format='JPEG')
b64image = base64.b64encode(buffered.getvalue()).decode('utf-8')
status_code, r = predict(b64image=b64image,
patient_identifier=patient_id,
**config)
if status_code in (200, 201, 204):
gr.Info('Prediction Successful')
else:
raise gr.Error(f'Error predicting {r}')
# APP
with gr.Blocks(head=prefer_frontal_cam_html) as block:
with gr.Tab(label='Welcome'):
gr.Markdown(f'# User: {config.get("restaurant_name", "Proppos")}')
@gr.render()
def render_dropdowns():
shift_dropdown = gr.Dropdown(label='Meal/Comida/Apat',
value=list(config["possible_shifts"].items())[0],
choices=tuple(config["possible_shifts"].items()))
mode_dropdown = gr.Dropdown(label='Mode',
value=config['possible_modes'][0],
choices=config["possible_modes"])
start_button = gr.Button(value='START')
start_button.click(fn=start_app, inputs=[shift_dropdown, mode_dropdown])
with gr.Tab(label='📷 Capture'):
# MAIN TAB TO PREDICT
gr.Markdown(f""" 1. Click to Access Webcam
2.
""")
im = gr.Image(sources=['webcam'], streaming=True, mirror_webcam=False, type='pil')
with gr.Accordion():
eater_id = gr.Textbox(label='Patient Identification', placeholder='Searching Patient ID')
current_eater_id = {'value': None}
@gr.on(inputs=im, outputs=eater_id)
def search_eater_id(image):
d = decode(image)
default_value = None
current_value = current_eater_id['value'] or default_value
new_value = d[0].data if d else default_value
# If it is really a new value different from the default one, change it.
final_value = new_value if new_value != default_value else current_value
current_eater_id['value'] = final_value
return final_value
b = gr.Button('PRESS TO PREDICT')
b.click(fn=predict_app, inputs=[im, eater_id], outputs=gr.Info())
with gr.Tab(label='ℹ️ Status'):
gr.Markdown(' Press the button to see the status of the Application and technical information')
load_status_button = gr.Button('Load Status')
status_json = gr.Json(label='Status')
load_status_button.click(fn=lambda: config, outputs=status_json)
with gr.Tab(label='📄 Documentation'):
gr.Markdown()
#block.launch(auth=("proppos", "Proppos2019"))
block.launch(show_api=False, auth=login)