pablo-rf commited on
Commit
8e0e280
1 Parent(s): 4b8ba13

Modifify eng/gl interface

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +27 -53
  3. interface_texts.csv +1 -0
README.md CHANGED
@@ -10,4 +10,4 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
10
  license: mit
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -3,45 +3,35 @@ import gradio as gr
3
  from gradio.components import Slider
4
  import torch
5
  from transformers import pipeline
6
- import pandas as pd
7
 
8
  # Model, information and examples ----------------------------------------------
9
  MODEL_NAMES = ["FLOR-1.3B-GL","Cerebras-1.3B-GL"]
10
- markdown_description_en = """
11
- # Galician LLMs
12
-
13
-
14
- This space contains the Galician language models developed by [Proxecto Nós](https://nos.gal/en/proxecto-nos).
15
-
16
-
17
- 💐 **[FLOR-1.3B-GL](https://huggingface.co/proxectonos/FLOR-1.3B-GL)** is a 1.3B parameters model which is a Continual pretraining from [FLOR-1.3B](https://huggingface.co/projecte-aina/FLOR-1.3B), which is based in [Bloom 1.7B](https://huggingface.co/bigscience/bloom-1b7).
18
-
19
- 👀 **Learn more about FLOR-1.3B-GL:** [HF official model card](https://huggingface.co/proxectonos/FLOR-1.3B-GL).
20
-
21
-
22
- 🧠 **[Cerebras-1.3B-GL](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)** is a 1.3B parameters model based in [Cerebras-GPT 1.3B](https://huggingface.co/cerebras/Cerebras-GPT-1.3B).
23
-
24
- 👀 **Learn more about Cerebras-1.3B-GL:** [HF official model card](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)
25
- """
26
-
27
- markdown_description_gl = """
28
- # LLMs de galego
29
 
30
 
31
  Este espazo contén diferentes Grandes Modelos da Linguaxe feitos para o galego desenvolvidos polo [Proxecto Nós](https://nos.gal/en/proxecto-nos).
32
 
 
33
 
34
  💐 **[FLOR-1.3B-GL](https://huggingface.co/proxectonos/FLOR-1.3B-GL)** é un modelo de parámetros 1.3B que é un preadestramento continuo de [FLOR-1.3B]( https://huggingface.co/projecte-aina/FLOR-1.3B), baseado a súa vez en [Bloom 1.7B](https://huggingface.co/bigscience/bloom-1b7).
35
 
 
 
36
  👀 **Máis información sobre FLOR-1.3B-GL:** [tarxeta modelo oficial HF](https://huggingface.co/proxectonos/FLOR-1.3B-GL).
37
 
 
 
 
 
38
 
39
- 🧠 **[Cerebras-1.3B-GL](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)** é un modelo de parámetros 1.3B baseado en [Cerebras-GPT 1.3B](https:/ /huggingface.co/cerebras/Cerebras-GPT-1.3B).
40
 
41
  👀 **Máis información sobre Cerebras-1.3B-GL:** [tarxeta modelo oficial HF](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)
 
 
42
  """
43
 
44
- markdown_description ={"en": markdown_description_en,"gl": markdown_description_gl}
45
  short_prompts_examples = [
46
  ["A receita tradicional das filloas é"],
47
  ["O neno vivía preto de"]
@@ -60,10 +50,6 @@ generator_model_flor = pipeline("text-generation", model=model_id_flor)
60
  model_id_cerebras = "proxectonos/Cerebras-1.3B-GL"
61
  generator_model_cerebras = pipeline("text-generation", model=model_id_cerebras, token=os.environ['TOKEN_HF'])
62
 
63
- # Load language texts ---------------------------------------------------------
64
- df_interface = pd.read_csv("interface_texts.csv")
65
- language = "gl"
66
-
67
  # Generation functions ---------------------------------------------------------
68
  def get_model(model_selection):
69
  if model_selection == "FLOR-1.3B-GL":
@@ -98,16 +84,6 @@ def predict(prompt, model_select, max_length, repetition_penalty, temperature):
98
  return generated_sequence
99
 
100
  # Gradio app ---------------------------------------------------------
101
- def get_text_lang(variable):
102
- return df_interface.loc[df_interface['variable'] == variable, language].values[0]
103
-
104
- def change_language(demo):
105
- if language == "gl":
106
- language = "en"
107
- else:
108
- language = "gl"
109
- demo.launch()
110
-
111
  def clear():
112
  return (
113
  None,
@@ -140,62 +116,60 @@ def gradio_app():
140
  with gr.Blocks(theme=fronted_theme) as demo:
141
  with gr.Row():
142
  with gr.Column(scale=0.1):
143
- change_lang = gr.Button(value=get_text_lang("change_lang"))
144
  gr.HTML('<img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;">')
145
  with gr.Column():
146
- gr.Markdown(markdown_description[language])
147
  with gr.Row(equal_height=True):
148
  model_select = gr.Dropdown(
149
- label=get_text_lang("model_select"),
150
  choices=MODEL_NAMES,
151
  value=MODEL_NAMES[0],
152
  interactive=True
153
  )
154
  with gr.Row(equal_height=True):
155
  with gr.Column():
156
- text_gl = gr.Textbox(label=get_text_lang("text_gl"),
157
  lines=6, placeholder="e.g. O neno vai a escola con ")
158
  with gr.Row(variant="panel"):
159
- with gr.Accordion(get_text_lang("accordion_parameters"), open=False):
160
  max_length = Slider(
161
  minimum=1,
162
  maximum=200,
163
  step=1,
164
  value=30,
165
- label=get_text_lang("max_length")
166
  )
167
  repetition_penalty = Slider(
168
  minimum=0.1,
169
  maximum=4,
170
  step=0.1,
171
  value=1.3,
172
- label=get_text_lang("repetition_penalty")
173
  )
174
  temperature = Slider(
175
  minimum=0,
176
  maximum=1,
177
  value=0.5,
178
- label=get_text_lang("temperature")
179
  )
180
- generator_btn = gr.Button(value=get_text_lang("generator_btn"),variant='primary')
181
  with gr.Column():
182
- generated_gl = gr.Textbox(label=get_text_lang("generated_gl_label"),
183
  lines=6,
184
- placeholder=get_text_lang("generated_gl_placeholder"),
185
  interactive=False,
186
  show_copy_button=True)
187
- pass_btn = gr.Button(value=get_text_lang("pass_btn"))
188
- clean_btn = gr.Button(value=get_text_lang("clean_btn"))
189
 
190
  generator_btn.click(predict, inputs=[text_gl, model_select, max_length, repetition_penalty, temperature], outputs=generated_gl, api_name="generate-flor-gl")
191
  clean_btn.click(fn=clear, inputs=[], outputs=[text_gl, generated_gl, max_length, repetition_penalty, temperature], queue=False, api_name=False)
192
  pass_btn.click(fn=pass_to_input, inputs=[generated_gl], outputs=[text_gl,generated_gl], queue=False, api_name=False)
193
- change_lang.click(fn=change_language, inputs=[demo], outputs=[], queue=False, api_name=False)
194
-
195
  with gr.Row():
196
  with gr.Column(scale=0.5):
197
  gr.Examples(
198
- label = get_text_lang("examples_short_prompts"),
199
  examples = short_prompts_examples,
200
  inputs = [text_gl],
201
  outputs = [max_length, repetition_penalty, temperature],
@@ -203,7 +177,7 @@ def gradio_app():
203
  run_on_click = True
204
  )
205
  gr.Examples(
206
- label = get_text_lang("examples_few_shot"),
207
  examples = few_shot_prompts_examples,
208
  inputs = [text_gl],
209
  outputs = [max_length, repetition_penalty, temperature],
 
3
  from gradio.components import Slider
4
  import torch
5
  from transformers import pipeline
 
6
 
7
  # Model, information and examples ----------------------------------------------
8
  MODEL_NAMES = ["FLOR-1.3B-GL","Cerebras-1.3B-GL"]
9
+ markdown_description = """
10
+ # LLMs de galego / Galician LLMs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
 
13
  Este espazo contén diferentes Grandes Modelos da Linguaxe feitos para o galego desenvolvidos polo [Proxecto Nós](https://nos.gal/en/proxecto-nos).
14
 
15
+ *This space contains the Galician language models developed by [Proxecto Nós](https://nos.gal/en/proxecto-nos).*
16
 
17
  💐 **[FLOR-1.3B-GL](https://huggingface.co/proxectonos/FLOR-1.3B-GL)** é un modelo de parámetros 1.3B que é un preadestramento continuo de [FLOR-1.3B]( https://huggingface.co/projecte-aina/FLOR-1.3B), baseado a súa vez en [Bloom 1.7B](https://huggingface.co/bigscience/bloom-1b7).
18
 
19
+ *💐 **[FLOR-1.3B-GL](https://huggingface.co/proxectonos/FLOR-1.3B-GL)** is a 1.3B parameters model which is a Continual pretraining from [FLOR-1.3B](https://huggingface.co/projecte-aina/FLOR-1.3B), which is based in [Bloom 1.7B](https://huggingface.co/bigscience/bloom-1b7).*
20
+
21
  👀 **Máis información sobre FLOR-1.3B-GL:** [tarxeta modelo oficial HF](https://huggingface.co/proxectonos/FLOR-1.3B-GL).
22
 
23
+ *👀 **Learn more about FLOR-1.3B-GL:** [HF official model card](https://huggingface.co/proxectonos/FLOR-1.3B-GL).*
24
+
25
+
26
+ 🧠 **[Cerebras-1.3B-GL](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)** é un modelo de parámetros 1.3B baseado en [Cerebras-GPT 1.3B](https://huggingface.co/cerebras/Cerebras-GPT-1.3B).
27
 
28
+ *🧠 **[Cerebras-1.3B-GL](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)** is a 1.3B parameters model based in [Cerebras-GPT 1.3B](https://huggingface.co/cerebras/Cerebras-GPT-1.3B).*
29
 
30
  👀 **Máis información sobre Cerebras-1.3B-GL:** [tarxeta modelo oficial HF](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)
31
+
32
+ *👀 **Learn more about Cerebras-1.3B-GL:** [HF official model card](https://huggingface.co/proxectonos/Cerebras-1.3B-GL)*
33
  """
34
 
 
35
  short_prompts_examples = [
36
  ["A receita tradicional das filloas é"],
37
  ["O neno vivía preto de"]
 
50
  model_id_cerebras = "proxectonos/Cerebras-1.3B-GL"
51
  generator_model_cerebras = pipeline("text-generation", model=model_id_cerebras, token=os.environ['TOKEN_HF'])
52
 
 
 
 
 
53
  # Generation functions ---------------------------------------------------------
54
  def get_model(model_selection):
55
  if model_selection == "FLOR-1.3B-GL":
 
84
  return generated_sequence
85
 
86
  # Gradio app ---------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
87
  def clear():
88
  return (
89
  None,
 
116
  with gr.Blocks(theme=fronted_theme) as demo:
117
  with gr.Row():
118
  with gr.Column(scale=0.1):
 
119
  gr.HTML('<img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;">')
120
  with gr.Column():
121
+ gr.Markdown(markdown_description)
122
  with gr.Row(equal_height=True):
123
  model_select = gr.Dropdown(
124
+ label="Selecione un modelo / Select a model",
125
  choices=MODEL_NAMES,
126
  value=MODEL_NAMES[0],
127
  interactive=True
128
  )
129
  with gr.Row(equal_height=True):
130
  with gr.Column():
131
+ text_gl = gr.Textbox(label="Entrada / Input",
132
  lines=6, placeholder="e.g. O neno vai a escola con ")
133
  with gr.Row(variant="panel"):
134
+ with gr.Accordion("Parámetros do modelo / Model parameters", open=False):
135
  max_length = Slider(
136
  minimum=1,
137
  maximum=200,
138
  step=1,
139
  value=30,
140
+ label="Max tokens"
141
  )
142
  repetition_penalty = Slider(
143
  minimum=0.1,
144
  maximum=4,
145
  step=0.1,
146
  value=1.3,
147
+ label="Penalización por repetición / Repetition penalty""
148
  )
149
  temperature = Slider(
150
  minimum=0,
151
  maximum=1,
152
  value=0.5,
153
+ label="Temperatura / Temperature"
154
  )
155
+ generator_btn = gr.Button(value="Xerar / Generate",variant='primary')
156
  with gr.Column():
157
+ generated_gl = gr.Textbox(label="Saída / Output",
158
  lines=6,
159
+ placeholder="O texto xerado aparecerá aquí...",
160
  interactive=False,
161
  show_copy_button=True)
162
+ pass_btn = gr.Button(value="Pasar texto xerado á entrada / Pass generated text to input",variant='secondary')
163
+ clean_btn = gr.Button(value="Limpar / Clear",variant='secondary')
164
 
165
  generator_btn.click(predict, inputs=[text_gl, model_select, max_length, repetition_penalty, temperature], outputs=generated_gl, api_name="generate-flor-gl")
166
  clean_btn.click(fn=clear, inputs=[], outputs=[text_gl, generated_gl, max_length, repetition_penalty, temperature], queue=False, api_name=False)
167
  pass_btn.click(fn=pass_to_input, inputs=[generated_gl], outputs=[text_gl,generated_gl], queue=False, api_name=False)
168
+
 
169
  with gr.Row():
170
  with gr.Column(scale=0.5):
171
  gr.Examples(
172
+ label = "Prompts curtos / Short prompts",
173
  examples = short_prompts_examples,
174
  inputs = [text_gl],
175
  outputs = [max_length, repetition_penalty, temperature],
 
177
  run_on_click = True
178
  )
179
  gr.Examples(
180
+ label = "Prompts con poucos exemplos / Few-shot prompts",
181
  examples = few_shot_prompts_examples,
182
  inputs = [text_gl],
183
  outputs = [max_length, repetition_penalty, temperature],
interface_texts.csv CHANGED
@@ -1,5 +1,6 @@
1
  variable,en,gl
2
  change_lang, Cambiar a Galego, Switch to English
 
3
  model_select,Model selection,Seleccione un modelo
4
  text_gl,Input,Entrada
5
  accordion_parameters,Model parameters,Parámetros do modelo
 
1
  variable,en,gl
2
  change_lang, Cambiar a Galego, Switch to English
3
+ change_lang_url,
4
  model_select,Model selection,Seleccione un modelo
5
  text_gl,Input,Entrada
6
  accordion_parameters,Model parameters,Parámetros do modelo