File size: 5,261 Bytes
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->

# CogVideoX

<!-- TODO: update paper with ArXiv link when ready. -->

[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) from Tsinghua University & ZhipuAI.

The abstract from the paper is:

*We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at https://github.com/THUDM/CogVideo.*

<Tip>

Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.

</Tip>

This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).

## Inference

Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.

First, load the pipeline:

```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video

pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b").to("cuda")
prompt = (
    "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
    "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
    "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
    "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
    "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
    "atmosphere of this unique musical performance."
)
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
export_to_video(video, "output.mp4", fps=8)
```

Then change the memory layout of the pipelines `transformer` and `vae` components to `torch.channels-last`:

```python
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.vae.to(memory_format=torch.channels_last)
```

Finally, compile the components and run inference:

```python
pipeline.transformer = torch.compile(pipeline.transformer)
pipeline.vae.decode = torch.compile(pipeline.vae.decode)

# CogVideoX works very well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipeline(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
```

The [benchmark](TODO: link) results on an 80GB A100 machine are:

```
Without torch.compile(): Average inference time: TODO seconds.
With torch.compile(): Average inference time: TODO seconds.
```

## CogVideoXPipeline

[[autodoc]] CogVideoXPipeline
  - all
  - __call__

## CogVideoXPipelineOutput

[[autodoc]] pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput