Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import inspect | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
enable_full_determinism() | |
class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = CogVideoXPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = CogVideoXTransformer3DModel( | |
# Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings | |
# But, since we are using tiny-random-t5 here, we need the internal dim of CogVideoXTransformer3DModel | |
# to be 32. The internal dim is product of num_attention_heads and attention_head_dim | |
num_attention_heads=4, | |
attention_head_dim=8, | |
in_channels=4, | |
out_channels=4, | |
time_embed_dim=2, | |
text_embed_dim=32, # Must match with tiny-random-t5 | |
num_layers=1, | |
sample_width=16, # latent width: 2 -> final width: 16 | |
sample_height=16, # latent height: 2 -> final height: 16 | |
sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9 | |
patch_size=2, | |
temporal_compression_ratio=4, | |
max_text_seq_length=16, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKLCogVideoX( | |
in_channels=3, | |
out_channels=3, | |
down_block_types=( | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
), | |
up_block_types=( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
block_out_channels=(8, 8, 8, 8), | |
latent_channels=4, | |
layers_per_block=1, | |
norm_num_groups=2, | |
temporal_compression_ratio=4, | |
) | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler() | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "dance monkey", | |
"negative_prompt": "", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
# Cannot reduce because convolution kernel becomes bigger than sample | |
"height": 16, | |
"width": 16, | |
# TODO(aryan): improve this | |
# Cannot make this lower due to assert condition in pipeline at the moment. | |
# The reason why 8 can't be used here is due to how context-parallel cache works where the first | |
# second of video is decoded from latent frames (0, 3) instead of [(0, 2), (2, 3)]. If 8 is used, | |
# the number of output frames that you get are 5. | |
"num_frames": 8, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames | |
generated_video = video[0] | |
self.assertEqual(generated_video.shape, (9, 3, 16, 16)) | |
expected_video = torch.randn(9, 3, 16, 16) | |
max_diff = np.abs(generated_video - expected_video).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_callback_inputs(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
has_callback_step_end = "callback_on_step_end" in sig.parameters | |
if not (has_callback_tensor_inputs and has_callback_step_end): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
self.assertTrue( | |
hasattr(pipe, "_callback_tensor_inputs"), | |
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
) | |
def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
def callback_inputs_all(pipe, i, t, callback_kwargs): | |
for tensor_name in pipe._callback_tensor_inputs: | |
assert tensor_name in callback_kwargs | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
inputs = self.get_dummy_inputs(torch_device) | |
# Test passing in a subset | |
inputs["callback_on_step_end"] = callback_inputs_subset | |
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
output = pipe(**inputs)[0] | |
# Test passing in a everything | |
inputs["callback_on_step_end"] = callback_inputs_all | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
is_last = i == (pipe.num_timesteps - 1) | |
if is_last: | |
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
return callback_kwargs | |
inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
assert output.abs().sum() < 1e10 | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
if not self.test_attention_slicing: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing1 = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=2) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing2 = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
self.assertLess( | |
max(max_diff1, max_diff2), | |
expected_max_diff, | |
"Attention slicing should not affect the inference results", | |
) | |
class CogVideoXPipelineIntegrationTests(unittest.TestCase): | |
prompt = "A painting of a squirrel eating a burger." | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_cogvideox(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
prompt = self.prompt | |
videos = pipe( | |
prompt=prompt, | |
height=480, | |
width=720, | |
num_frames=16, | |
generator=generator, | |
num_inference_steps=2, | |
output_type="pt", | |
).frames | |
video = videos[0] | |
expected_video = torch.randn(1, 16, 480, 720, 3).numpy() | |
max_diff = numpy_cosine_similarity_distance(video, expected_video) | |
assert max_diff < 1e-3, f"Max diff is too high. got {video}" | |