Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel | |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel | |
from diffusers.utils.testing_utils import ( | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
class FluxPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = FluxPipeline | |
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) | |
batch_params = frozenset(["prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = FluxTransformer2DModel( | |
patch_size=1, | |
in_channels=4, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=16, | |
num_attention_heads=2, | |
joint_attention_dim=32, | |
pooled_projection_dim=32, | |
axes_dims_rope=[4, 4, 8], | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModel(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=1, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"transformer": transformer, | |
"vae": vae, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"height": 8, | |
"width": 8, | |
"max_sequence_length": 48, | |
"output_type": "np", | |
} | |
return inputs | |
def test_flux_different_prompts(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_same_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt_2"] = "a different prompt" | |
output_different_prompts = pipe(**inputs).images[0] | |
max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
# Outputs should be different here | |
# For some reasons, they don't show large differences | |
assert max_diff > 1e-6 | |
def test_flux_prompt_embeds(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
(prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt( | |
prompt, | |
prompt_2=None, | |
device=torch_device, | |
max_sequence_length=inputs["max_sequence_length"], | |
) | |
output_with_embeds = pipe( | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
**inputs, | |
).images[0] | |
max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
assert max_diff < 1e-4 | |
class FluxPipelineSlowTests(unittest.TestCase): | |
pipeline_class = FluxPipeline | |
repo_id = "black-forest-labs/FLUX.1-schnell" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
return { | |
"prompt": "A photo of a cat", | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"generator": generator, | |
} | |
# TODO: Dhruv. Move large model tests to a dedicated runner) | |
def test_flux_inference(self): | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
pipe.enable_model_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images[0] | |
image_slice = image[0, :10, :10] | |
expected_slice = np.array( | |
[ | |
[0.36132812, 0.30004883, 0.25830078], | |
[0.36669922, 0.31103516, 0.23754883], | |
[0.34814453, 0.29248047, 0.23583984], | |
[0.35791016, 0.30981445, 0.23999023], | |
[0.36328125, 0.31274414, 0.2607422], | |
[0.37304688, 0.32177734, 0.26171875], | |
[0.3671875, 0.31933594, 0.25756836], | |
[0.36035156, 0.31103516, 0.2578125], | |
[0.3857422, 0.33789062, 0.27563477], | |
[0.3701172, 0.31982422, 0.265625], | |
], | |
dtype=np.float32, | |
) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
assert max_diff < 1e-4 | |