Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM | |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline | |
from diffusers.utils.testing_utils import ( | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = LuminaText2ImgPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "negative_prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = LuminaNextDiT2DModel( | |
sample_size=16, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=24, | |
num_layers=2, | |
num_attention_heads=3, | |
num_kv_heads=1, | |
multiple_of=16, | |
ffn_dim_multiplier=None, | |
norm_eps=1e-5, | |
learn_sigma=True, | |
qk_norm=True, | |
cross_attention_dim=32, | |
scaling_factor=1.0, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL() | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") | |
torch.manual_seed(0) | |
config = GemmaConfig( | |
head_dim=4, | |
hidden_size=32, | |
intermediate_size=37, | |
num_attention_heads=4, | |
num_hidden_layers=2, | |
num_key_value_heads=4, | |
) | |
text_encoder = GemmaForCausalLM(config) | |
components = { | |
"transformer": transformer.eval(), | |
"vae": vae.eval(), | |
"scheduler": scheduler, | |
"text_encoder": text_encoder.eval(), | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_lumina_prompt_embeds(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = pipe.encode_prompt( | |
prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
device=torch_device, | |
) | |
output_with_embeds = pipe( | |
prompt_embeds=prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
**inputs, | |
).images[0] | |
max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
assert max_diff < 1e-4 | |
class LuminaText2ImgPipelineSlowTests(unittest.TestCase): | |
pipeline_class = LuminaText2ImgPipeline | |
repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
return { | |
"prompt": "A photo of a cat", | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"generator": generator, | |
} | |
def test_lumina_inference(self): | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
pipe.enable_model_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images[0] | |
image_slice = image[0, :10, :10] | |
expected_slice = np.array( | |
[ | |
[0.17773438, 0.18554688, 0.22070312], | |
[0.046875, 0.06640625, 0.10351562], | |
[0.0, 0.0, 0.02148438], | |
[0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0], | |
], | |
dtype=np.float32, | |
) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
assert max_diff < 1e-4 | |