Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AnimateDiffPAGPipeline, | |
AnimateDiffPipeline, | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
LCMScheduler, | |
MotionAdapter, | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
UNetMotionModel, | |
) | |
from diffusers.models.attention import FreeNoiseTransformerBlock | |
from diffusers.utils import is_xformers_available | |
from diffusers.utils.testing_utils import torch_device | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import ( | |
IPAdapterTesterMixin, | |
PipelineFromPipeTesterMixin, | |
PipelineTesterMixin, | |
SDFunctionTesterMixin, | |
) | |
def to_np(tensor): | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.detach().cpu().numpy() | |
return tensor | |
class AnimateDiffPAGPipelineFastTests( | |
IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase | |
): | |
pipeline_class = AnimateDiffPAGPipeline | |
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
def get_dummy_components(self): | |
cross_attention_dim = 8 | |
block_out_channels = (8, 8) | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=block_out_channels, | |
layers_per_block=2, | |
sample_size=8, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=2, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="linear", | |
clip_sample=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=block_out_channels, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=cross_attention_dim, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
motion_adapter = MotionAdapter( | |
block_out_channels=block_out_channels, | |
motion_layers_per_block=2, | |
motion_norm_num_groups=2, | |
motion_num_attention_heads=4, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"motion_adapter": motion_adapter, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 7.5, | |
"pag_scale": 3.0, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_from_pipe_consistent_config(self): | |
assert self.original_pipeline_class == StableDiffusionPipeline | |
original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe" | |
original_kwargs = {"requires_safety_checker": False} | |
# create original_pipeline_class(sd) | |
pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs) | |
# original_pipeline_class(sd) -> pipeline_class | |
pipe_components = self.get_dummy_components() | |
pipe_additional_components = {} | |
for name, component in pipe_components.items(): | |
if name not in pipe_original.components: | |
pipe_additional_components[name] = component | |
pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components) | |
# pipeline_class -> original_pipeline_class(sd) | |
original_pipe_additional_components = {} | |
for name, component in pipe_original.components.items(): | |
if name not in pipe.components or not isinstance(component, pipe.components[name].__class__): | |
original_pipe_additional_components[name] = component | |
pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components) | |
# compare the config | |
original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")} | |
original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")} | |
assert original_config_2 == original_config | |
def test_motion_unet_loading(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
assert isinstance(pipe.unet, UNetMotionModel) | |
def test_attention_slicing_forward_pass(self): | |
pass | |
def test_ip_adapter_single(self): | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array( | |
[ | |
0.5068, | |
0.5294, | |
0.4926, | |
0.4810, | |
0.4188, | |
0.5935, | |
0.5295, | |
0.3947, | |
0.5300, | |
0.4706, | |
0.3950, | |
0.4737, | |
0.4072, | |
0.3227, | |
0.5481, | |
0.4864, | |
0.4518, | |
0.5315, | |
0.5979, | |
0.5374, | |
0.3503, | |
0.5275, | |
0.6067, | |
0.4914, | |
0.5440, | |
0.4775, | |
0.5538, | |
] | |
) | |
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
def test_dict_tuple_outputs_equivalent(self): | |
expected_slice = None | |
if torch_device == "cpu": | |
expected_slice = np.array([0.5295, 0.3947, 0.5300, 0.4864, 0.4518, 0.5315, 0.5440, 0.4775, 0.5538]) | |
return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) | |
def test_to_device(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to("cpu") | |
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cpu" for device in model_devices)) | |
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
pipe.to("cuda") | |
model_devices = [ | |
component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
] | |
self.assertTrue(all(device == "cuda" for device in model_devices)) | |
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | |
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
def test_to_dtype(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
pipe.to(dtype=torch.float16) | |
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
def test_prompt_embeds(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs.pop("prompt") | |
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device) | |
pipe(**inputs) | |
def test_free_init(self): | |
components = self.get_dummy_components() | |
pipe: AnimateDiffPAGPipeline = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs_normal = self.get_dummy_inputs(torch_device) | |
frames_normal = pipe(**inputs_normal).frames[0] | |
pipe.enable_free_init( | |
num_iters=2, | |
use_fast_sampling=True, | |
method="butterworth", | |
order=4, | |
spatial_stop_frequency=0.25, | |
temporal_stop_frequency=0.25, | |
) | |
inputs_enable_free_init = self.get_dummy_inputs(torch_device) | |
frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0] | |
pipe.disable_free_init() | |
inputs_disable_free_init = self.get_dummy_inputs(torch_device) | |
frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0] | |
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() | |
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max() | |
self.assertGreater( | |
sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results" | |
) | |
self.assertLess( | |
max_diff_disabled, | |
1e-3, | |
"Disabling of FreeInit should lead to results similar to the default pipeline results", | |
) | |
def test_free_init_with_schedulers(self): | |
components = self.get_dummy_components() | |
pipe: AnimateDiffPAGPipeline = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs_normal = self.get_dummy_inputs(torch_device) | |
frames_normal = pipe(**inputs_normal).frames[0] | |
schedulers_to_test = [ | |
DPMSolverMultistepScheduler.from_config( | |
components["scheduler"].config, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
algorithm_type="dpmsolver++", | |
steps_offset=1, | |
clip_sample=False, | |
), | |
LCMScheduler.from_config( | |
components["scheduler"].config, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
steps_offset=1, | |
clip_sample=False, | |
), | |
] | |
components.pop("scheduler") | |
for scheduler in schedulers_to_test: | |
components["scheduler"] = scheduler | |
pipe: AnimateDiffPAGPipeline = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
pipe.enable_free_init(num_iters=2, use_fast_sampling=False) | |
inputs = self.get_dummy_inputs(torch_device) | |
frames_enable_free_init = pipe(**inputs).frames[0] | |
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() | |
self.assertGreater( | |
sum_enabled, | |
1e1, | |
"Enabling of FreeInit should lead to results different from the default pipeline results", | |
) | |
def test_free_noise_blocks(self): | |
components = self.get_dummy_components() | |
pipe: AnimateDiffPAGPipeline = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
pipe.enable_free_noise() | |
for block in pipe.unet.down_blocks: | |
for motion_module in block.motion_modules: | |
for transformer_block in motion_module.transformer_blocks: | |
self.assertTrue( | |
isinstance(transformer_block, FreeNoiseTransformerBlock), | |
"Motion module transformer blocks must be an instance of `FreeNoiseTransformerBlock` after enabling FreeNoise.", | |
) | |
pipe.disable_free_noise() | |
for block in pipe.unet.down_blocks: | |
for motion_module in block.motion_modules: | |
for transformer_block in motion_module.transformer_blocks: | |
self.assertFalse( | |
isinstance(transformer_block, FreeNoiseTransformerBlock), | |
"Motion module transformer blocks must not be an instance of `FreeNoiseTransformerBlock` after disabling FreeNoise.", | |
) | |
def test_free_noise(self): | |
components = self.get_dummy_components() | |
pipe: AnimateDiffPAGPipeline = self.pipeline_class(**components) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.to(torch_device) | |
inputs_normal = self.get_dummy_inputs(torch_device) | |
frames_normal = pipe(**inputs_normal).frames[0] | |
for context_length in [8, 9]: | |
for context_stride in [4, 6]: | |
pipe.enable_free_noise(context_length, context_stride) | |
inputs_enable_free_noise = self.get_dummy_inputs(torch_device) | |
frames_enable_free_noise = pipe(**inputs_enable_free_noise).frames[0] | |
pipe.disable_free_noise() | |
inputs_disable_free_noise = self.get_dummy_inputs(torch_device) | |
frames_disable_free_noise = pipe(**inputs_disable_free_noise).frames[0] | |
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_noise)).sum() | |
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_noise)).max() | |
self.assertGreater( | |
sum_enabled, | |
1e1, | |
"Enabling of FreeNoise should lead to results different from the default pipeline results", | |
) | |
self.assertLess( | |
max_diff_disabled, | |
1e-4, | |
"Disabling of FreeNoise should lead to results similar to the default pipeline results", | |
) | |
def test_xformers_attention_forwardGenerator_pass(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_without_offload = pipe(**inputs).frames[0] | |
output_without_offload = ( | |
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | |
) | |
pipe.enable_xformers_memory_efficient_attention() | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_offload = pipe(**inputs).frames[0] | |
output_with_offload = ( | |
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | |
) | |
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") | |
def test_vae_slicing(self): | |
return super().test_vae_slicing(image_count=2) | |
def test_pag_disable_enable(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline (expect same output when pag is disabled) | |
components.pop("pag_applied_layers", None) | |
pipe_sd = AnimateDiffPipeline(**components) | |
pipe_sd = pipe_sd.to(device) | |
pipe_sd.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["pag_scale"] | |
assert ( | |
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters | |
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
out = pipe_sd(**inputs).frames[0, -3:, -3:, -1] | |
components = self.get_dummy_components() | |
# pag disabled with pag_scale=0.0 | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["pag_scale"] = 0.0 | |
out_pag_disabled = pipe_pag(**inputs).frames[0, -3:, -3:, -1] | |
# pag enabled | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
out_pag_enabled = pipe_pag(**inputs).frames[0, -3:, -3:, -1] | |
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | |
def test_pag_applied_layers(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline | |
components.pop("pag_applied_layers", None) | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
# pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers | |
# Note that for motion modules in AnimateDiff, both attn1 and attn2 are self-attention | |
all_self_attn_layers = [ | |
k for k in pipe.unet.attn_processors.keys() if "attn1" in k or ("motion_modules" in k and "attn2" in k) | |
] | |
original_attn_procs = pipe.unet.attn_processors | |
pag_layers = [ | |
"down", | |
"mid", | |
"up", | |
] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) | |
# pag_applied_layers = ["mid"], or ["mid_block.0"] should apply to all self-attention layers in mid_block, i.e. | |
# mid_block.motion_modules.0.transformer_blocks.0.attn1.processor | |
# mid_block.attentions.0.transformer_blocks.0.attn1.processor | |
all_self_attn_mid_layers = [ | |
"mid_block.attentions.0.transformer_blocks.0.attn1.processor", | |
"mid_block.motion_modules.0.transformer_blocks.0.attn1.processor", | |
"mid_block.motion_modules.0.transformer_blocks.0.attn2.processor", | |
] | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["mid"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["mid_block"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["mid_block.(attentions|motion_modules)"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["mid_block.attentions.1"] | |
with self.assertRaises(ValueError): | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
# pag_applied_layers = "down" should apply to all self-attention layers in down_blocks | |
# down_blocks.1.(attentions|motion_modules).0.transformer_blocks.0.attn1.processor | |
# down_blocks.1.(attentions|motion_modules).0.transformer_blocks.1.attn1.processor | |
# down_blocks.1.(attentions|motion_modules).0.transformer_blocks.0.attn1.processor | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["down"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert len(pipe.pag_attn_processors) == 10 | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["down_blocks.0"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert (len(pipe.pag_attn_processors)) == 6 | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["blocks.1"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert len(pipe.pag_attn_processors) == 10 | |
pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["motion_modules.42"] | |
with self.assertRaises(ValueError): | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |