Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
SD3Transformer2DModel, | |
StableDiffusion3PAGPipeline, | |
StableDiffusion3Pipeline, | |
) | |
from diffusers.utils.testing_utils import ( | |
torch_device, | |
) | |
from ..test_pipelines_common import ( | |
PipelineTesterMixin, | |
check_qkv_fusion_matches_attn_procs_length, | |
check_qkv_fusion_processors_exist, | |
) | |
class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = StableDiffusion3PAGPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "negative_prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = SD3Transformer2DModel( | |
sample_size=32, | |
patch_size=1, | |
in_channels=4, | |
num_layers=2, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
caption_projection_dim=32, | |
joint_attention_dim=32, | |
pooled_projection_dim=64, | |
out_channels=4, | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=4, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"text_encoder_3": text_encoder_3, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"tokenizer_3": tokenizer_3, | |
"transformer": transformer, | |
"vae": vae, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"pag_scale": 0.0, | |
} | |
return inputs | |
def test_stable_diffusion_3_different_prompts(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_same_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt_2"] = "a different prompt" | |
inputs["prompt_3"] = "another different prompt" | |
output_different_prompts = pipe(**inputs).images[0] | |
max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
# Outputs should be different here | |
assert max_diff > 1e-2 | |
def test_stable_diffusion_3_different_negative_prompts(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_same_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["negative_prompt_2"] = "deformed" | |
inputs["negative_prompt_3"] = "blurry" | |
output_different_prompts = pipe(**inputs).images[0] | |
max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
# Outputs should be different here | |
assert max_diff > 1e-2 | |
def test_stable_diffusion_3_prompt_embeds(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt( | |
prompt, | |
prompt_2=None, | |
prompt_3=None, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
device=torch_device, | |
) | |
output_with_embeds = pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
**inputs, | |
).images[0] | |
max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
assert max_diff < 1e-4 | |
def test_fused_qkv_projections(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
original_image_slice = image[0, -3:, -3:, -1] | |
# TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added | |
# to the pipeline level. | |
pipe.transformer.fuse_qkv_projections() | |
assert check_qkv_fusion_processors_exist( | |
pipe.transformer | |
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
assert check_qkv_fusion_matches_attn_procs_length( | |
pipe.transformer, pipe.transformer.original_attn_processors | |
), "Something wrong with the attention processors concerning the fused QKV projections." | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_fused = image[0, -3:, -3:, -1] | |
pipe.transformer.unfuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_disabled = image[0, -3:, -3:, -1] | |
assert np.allclose( | |
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
), "Fusion of QKV projections shouldn't affect the outputs." | |
assert np.allclose( | |
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
assert np.allclose( | |
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
), "Original outputs should match when fused QKV projections are disabled." | |
def test_pag_disable_enable(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline (expect same output when pag is disabled) | |
pipe_sd = StableDiffusion3Pipeline(**components) | |
pipe_sd = pipe_sd.to(device) | |
pipe_sd.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["pag_scale"] | |
assert ( | |
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters | |
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | |
components = self.get_dummy_components() | |
# pag disabled with pag_scale=0.0 | |
pipe_pag = self.pipeline_class(**components) | |
pipe_pag = pipe_pag.to(device) | |
pipe_pag.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["pag_scale"] = 0.0 | |
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
def test_pag_applied_layers(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
# base pipeline | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn" in k] | |
original_attn_procs = pipe.transformer.attn_processors | |
pag_layers = ["blocks.0", "blocks.1"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) | |
# blocks.0 | |
block_0_self_attn = ["transformer_blocks.0.attn.processor"] | |
pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["blocks.0"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(block_0_self_attn) | |
pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["blocks.0.attn"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert set(pipe.pag_attn_processors) == set(block_0_self_attn) | |
pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["blocks.(0|1)"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert (len(pipe.pag_attn_processors)) == 2 | |
pipe.transformer.set_attn_processor(original_attn_procs.copy()) | |
pag_layers = ["blocks.0", r"blocks\.1"] | |
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
assert len(pipe.pag_attn_processors) == 2 | |