File size: 10,531 Bytes
ce9fae3
 
 
 
 
 
 
 
 
 
585af8d
ce9fae3
 
b76ffcc
ce9fae3
 
 
 
585af8d
b76ffcc
 
ce9fae3
fac922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9fae3
585af8d
ce9fae3
fac922b
 
ce9fae3
 
f7db876
 
ce9fae3
fac922b
 
f7db876
 
fac922b
f7db876
 
ce9fae3
f7db876
ce9fae3
 
585af8d
ce9fae3
 
 
 
 
585af8d
ce9fae3
 
 
 
 
585af8d
 
ce9fae3
 
 
 
 
585af8d
 
ce9fae3
 
585af8d
ce9fae3
585af8d
b76ffcc
ce9fae3
 
b76ffcc
ce9fae3
 
 
 
 
 
 
b76ffcc
 
 
 
 
 
 
 
 
 
ce9fae3
b76ffcc
 
 
 
527a4f5
b76ffcc
ce9fae3
b76ffcc
ce9fae3
b76ffcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9fae3
b76ffcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9fae3
 
 
 
 
 
 
585af8d
ce9fae3
 
 
 
f7db876
 
7a64fcf
f7db876
b76ffcc
f7db876
 
7a64fcf
 
f7db876
7a64fcf
f7db876
 
 
7a64fcf
f7db876
b76ffcc
f7db876
 
7a64fcf
 
f7db876
7a64fcf
 
f7db876
 
 
 
 
 
 
7a64fcf
b76ffcc
7a64fcf
f7db876
 
ce9fae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a64fcf
ce9fae3
7a64fcf
b76ffcc
ff49e85
7a64fcf
63c1123
b76ffcc
ce9fae3
 
7a64fcf
 
 
ce9fae3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download, Repository
from huggingface_hub.repocard import metadata_load
from gradio_client import Client
from PIL import Image, ImageDraw, ImageFont

from datetime import date
import time  

import os
import sys
import pandas as pd
import json
import shutil

api = HfApi()
HF_TOKEN = os.environ.get("HF_TOKEN")

# Public dataset repo containing the pdfs of already certified users
DATASET_REPO_URL = f"https://wseo:{HF_TOKEN}@huggingface.co/datasets/pseudolab/huggingface-krew-hackathon2023"
CERTIFIED_USERS_FILENAME = "certified.csv"

ORGANIZATION = "pseudolab"


def has_contributions(repo_type, hf_username, organization):
    """
    Check if a user has contributions in the specified repository type.
    :param repo_type: A repo type supported by the Hub
    :param hf_username: HF Hub username
    :param organization: HF Hub organization
    """
    repo_list = {
        'model': api.list_models,
        'dataset': api.list_datasets,
        'space': api.list_spaces
    }

    for repo in repo_list[repo_type](author=organization):
        commits = api.list_repo_commits(repo.id, repo_type=repo_type)
        if any(hf_username in commit.authors for commit in commits):
            return True
    return False


def get_hub_footprint(hf_username, organization):
    """
    Check the types of contributions a user has made.
    :param hf_username: HF Hub username
    :param organization: HF Hub organization
    """
    has_models = has_contributions('model', hf_username, organization)
    has_datasets = has_contributions('dataset', hf_username, organization)
    has_spaces = has_contributions('space', hf_username, organization)

    return (has_models, has_datasets, has_spaces)


def check_if_passed(hf_username):
    """
    Check if given user contributed to hackathon
    :param hf_username: HF Hub username
    """
    
    passed = False  
    certificate_type = ""

    # If the user contributed to models, datasets and spaces then assign excellence
    if all(get_hub_footprint(hf_username, ORGANIZATION)):
      passed = True
      certificate_type = "excellence"
    elif any(get_hub_footprint(hf_username, ORGANIZATION)):
      passed = True
      certificate_type = "completion"

    return passed, certificate_type


def generate_certificate(certificate_template, first_name, last_name, hf_username):
    """
    Generates certificate from the template
    :param certificate_template: type of the certificate to generate
    :param first_name: first name entered by user
    :param last_name: last name entered by user
    :param hf_username: Hugging Face Hub username entered by user
    """

    im = Image.open(certificate_template)
    d = ImageDraw.Draw(im)

    name_font = ImageFont.truetype("HeiseiMinchoStdW7.otf", 60)
    username_font = ImageFont.truetype("HeiseiMinchoStdW7.otf", 18)
    
    name = str(first_name) + " " + str(last_name)
    print("NAME", name)
    
    # Debug line name
    #d.line(((0, 419), (1000, 419)), "gray")
    #d.line(((538, 0), (538, 1400)), "gray")
    
    # Name
    d.text((538, 419), name, fill=(87,87,87), anchor="mm", font=name_font)

    # Debug line id
    #d.line(((815, 0), (815, 1400)), "gray")

    # Date of certification
    d.text((815, 327), f"HKH23-{hf_username}", fill=(117,117,117), font=username_font)

    pdf = im.convert('RGB')
    pdf.save('certificate.pdf')

    return im, "./certificate.pdf"


def create_initial_csv(path):
    """Create an initial CSV file with headers if it doesn't exist."""
    # Define the headers for our CSV file
    headers = ['hf_username', 'first_name', 'last_name', 'certificate_type', 'datetime', 'pdf_path']
    # Create a new DataFrame with no data and these headers
    df = pd.DataFrame(columns=headers)
    # Save the DataFrame to a CSV file
    df.to_csv(path, index=False)


def add_certified_user(hf_username, first_name, last_name, certificate_type):
    """
    Add the certified user to the dataset and include their certificate PDF.
    """
    print("ADD CERTIFIED USER")
    repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, git_user="wseo", git_email="[email protected]")
    repo.git_pull()

    csv_full_path = os.path.join("data", CERTIFIED_USERS_FILENAME)

    if not os.path.isfile(csv_full_path):
        create_initial_csv(csv_full_path)

    history = pd.read_csv(csv_full_path)

    # Check if this hf_username is already in our dataset:
    check = history.loc[history['hf_username'] == hf_username]
    if not check.empty:
        history = history.drop(labels=check.index[0], axis=0)

    pdfs_repo_path = os.path.join("data", "pdfs")

    # Copy the PDF from its current location to the target directory in the repository
    pdf_repo_filename = f"{hf_username}.pdf"  # Create a specific name for the PDF file
    pdf_repo_path_full = os.path.join(pdfs_repo_path, pdf_repo_filename)
    
    # Create the pdfs directory if it doesn't exist
    os.makedirs(pdfs_repo_path, exist_ok=True)
    
    shutil.copy('./certificate.pdf', pdf_repo_path_full)  # Copy the file

    # Now, add a new entry to your CSV for this user and their PDF
    new_row = pd.DataFrame({
        'hf_username': hf_username,
        'first_name': first_name,
        'last_name': last_name,
        'certificate_type': certificate_type,
        'datetime': time.time(),  # This captures the current time
        'pdf_path': pdf_repo_path_full[5:]  # This is the relative path to the PDF within the repo
    }, index=[0])
    
    history = pd.concat([new_row, history[:]]).reset_index(drop=True)
    
    # Save the updated CSV
    history.to_csv(os.path.join("data", CERTIFIED_USERS_FILENAME), index=False)

    # Add the PDF and CSV changes to the repo and push
    repo.git_add()
    repo.push_to_hub(commit_message="Update certified users list and add PDF")


def create_certificate(passed, certificate_type, hf_username, first_name, last_name):  
    """
    Generates certificate, adds message, saves username of the certified user 
    :param passed: boolean whether the user passed enough assignments
    :param certificate_type: type of the certificate - completion or excellence
    :param hf_username: Hugging Face Hub username entered by user
    :param first_name: first name entered by user
    :param last_name: last name entered by user
    """

    if passed and certificate_type == "excellence":
        # Generate a certificate of 
        certificate, pdf = generate_certificate("./certificate-excellence.png", first_name, last_name, hf_username)
        # Add this user to our database
        add_certified_user(hf_username, first_name, last_name, certificate_type)    
        # Add a message
        message = """
        Congratulations, you successfully completed the 2023 Hackathon πŸŽ‰! \n 
        Since you contributed to models, datasets, and spaces- you get a Certificate of Excellence πŸŽ“. \n
        You can download your certificate below ⬇️ \n
        Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @wonhseo, @pseudolab and @huggingface) πŸ€—
        """
    elif passed and certificate_type == "completion":    
        # Generate a certificate of completion
        certificate, pdf = generate_certificate("./certificate-completion.png", first_name, last_name, hf_username)
        # Add this user to our database
        add_certified_user(hf_username, first_name, last_name, certificate_type)    
        # Add a message
        message = """
        Congratulations, you successfully completed the 2023 Hackathon πŸŽ‰! \n 
        Since you contributed to at least one model, dataset, or space- you get a Certificate of Completion πŸŽ“. \n 
        You can download your certificate below ⬇️ \n
        Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @wonhseo, @pseudolab and @huggingface) πŸ€— \n
        You can try to get a Certificate of Excellence if you contribute to all types of repos, please don't hesitate to do so.
        """
    else:
        # Not passed yet
        certificate = Image.new("RGB", (100, 100), (255, 255, 255))
        pdf = "./fail.pdf"        
        # Add a message
        message = """
          You didn't pass the minimum of one contribution to get a certificate of completion. 
          For more information about the certification process, refer to the hackathon page.
          If the results here differ from your contributions, make sure you moved your space to the pseudolab organization.
          """
    return certificate, message, pdf


def certification(hf_username, first_name, last_name):
  passed, certificate_type = check_if_passed(hf_username)
  certificate, message, pdf = create_certificate(passed, certificate_type, hf_username, first_name, last_name)
  print("MESSAGE", message)

  if passed:
    visible = True
  else:
    visible = False
  
  return message, pdf, certificate, output_row.update(visible=visible) 

with gr.Blocks() as demo:
    gr.Markdown(f"""
    # Get your 2023 Hackathon Certificate πŸŽ“
    The certification process is completely free:
    - To get a *certificate of completion*: you need to **contribute to at least one model, dataset, or space**.
    - To get a *certificate of excellence*: you need to **contribute to models, datasets, and spaces**. *(Yes, all three!)*
    
    For more information about the certification process [check the hackathon page on certification](https://pseudo-lab.github.io/huggingface-hackathon23/submit.html#certification).
    
    Don't hesitate to share your certificate on Twitter (tag me [@wonhseo](https://twitter.com/wonhseo), [@pseudolab](https://twitter.com/pseudolab), and [@huggingface](https://twitter.com/huggingface)) and on LinkedIn.
    """)
    
    hf_username = gr.Textbox(placeholder="wseo", label="Your Hugging Face Username (case sensitive)")
    first_name = gr.Textbox(placeholder="Wonhyeong", label="Your First Name")
    last_name = gr.Textbox(placeholder="Seo", label="Your Last Name")

    check_progress_button = gr.Button(value="Check if I pass and get the certificate")
    output_text = gr.components.Textbox()

    with gr.Row(visible=True) as output_row:
        output_pdf = gr.File()
        output_img = gr.components.Image(type="pil")

    check_progress_button.click(fn=certification, inputs=[hf_username, first_name, last_name], outputs=[output_text, output_pdf, output_img, output_row])

    
demo.launch(debug=True)