File size: 7,868 Bytes
ce9fae3 f7db876 ce9fae3 f7db876 ce9fae3 f7db876 ce9fae3 f7db876 ce9fae3 f7db876 e237e5f f7db876 ce9fae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download, Repository
from huggingface_hub.repocard import metadata_load
from gradio_client import Client
from PIL import Image, ImageDraw, ImageFont
from datetime import date
import time
import os
import pandas as pd
import json
api = HfApi()
HF_TOKEN = os.environ.get("HF_TOKEN")
# Private dataset repo containing the list of already certified users
DATASET_REPO_URL = "https://huggingface.co/datasets/MariaK/audio-course"
CERTIFIED_USERS_FILENAME = "usernames.csv"
# Private space to check if a user has passed.
SPACE_ID = "MariaK/Check-Audio-Course-Progress"
def check_if_passed(username):
"""
Check if given user passed enough assignments
:param username: User HF username
"""
passed = False
certificate_type = ""
client = Client(SPACE_ID, hf_token=HF_TOKEN)
result = client.predict(username, fn_index=0)
with open(result) as json_data:
data = json.load(json_data)
df = pd.DataFrame(data['data'])
if len(df[df.iloc[:,0] == 'β
']) == 4:
passed = True
certificate_type = "excellence"
elif len(df[df.iloc[:,0] == 'β
']) == 3:
passed = True
certificate_type = "completion"
return passed, certificate_type
def generate_certificate(certificate_template, first_name, last_name):
"""
Generates certificate from the template
:param certificate_template: type of the certificate to generate
:param first_name: first name entered by user
:param last_name: last name entered by user
"""
im = Image.open(certificate_template)
d = ImageDraw.Draw(im)
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
name = str(first_name) + " " + str(last_name)
print("NAME", name)
# Debug line name
#d.line(((200, 740), (1800, 740)), "gray")
#d.line(((1000, 0), (1000, 1400)), "gray")
# Name
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
# Debug line date
#d.line(((1500, 0), (1500, 1400)), "gray")
# Date of certification
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
pdf = im.convert('RGB')
pdf.save('certificate.pdf')
return im, "./certificate.pdf"
def add_certified_user(hf_username, first_name, last_name, certificate_type):
"""
Add the certified user to the database
"""
print("ADD CERTIFIED USER")
repo = Repository(local_dir="usernames", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
repo.git_pull()
history = pd.read_csv(os.path.join("usernames", CERTIFIED_USERS_FILENAME))
# Check if this hf_username is already in our dataset:
check = history.loc[history['hf_username'] == hf_username]
if not check.empty:
history = history.drop(labels=check.index[0], axis=0)
new_row = pd.DataFrame({'hf_username': hf_username, 'first_name': first_name, 'last_name': last_name, 'certificate_type': certificate_type, 'datetime': time.time()}, index=[0])
history = pd.concat([new_row, history[:]]).reset_index(drop=True)
history.to_csv(os.path.join("usernames", CERTIFIED_USERS_FILENAME), index=False)
repo.push_to_hub(commit_message="Update certified users list")
def create_certificate(passed, certificate_type, hf_username, first_name, last_name):
"""
Generates certificate, adds message, saves username of the certified user
:param passed: boolean whether the user passed enough assignments
:param certificate_type: type of the certificate - completion or excellence
:param first_name: first name entered by user
:param last_name: last name entered by user
"""
if passed and certificate_type == "excellence":
# Generate a certificate of
certificate, pdf = generate_certificate("./certificate-excellence.png", first_name, last_name)
# Add this user to our database
add_certified_user(hf_username, first_name, last_name, certificate_type)
# Add a message
message = """
Congratulations, you successfully completed the Hugging Face Audio Course π! \n
Since you pass 100% of the hands-on you get a Certificate of Excellence π. \n
You can download your certificate below β¬οΈ \n
Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @mariakhalusova and @huggingface) π€
"""
elif passed and certificate_type == "completion":
# Generate a certificate of completion
certificate, pdf = generate_certificate("./certificate-completion.png", first_name, last_name)
# Add this user to our database
add_certified_user(hf_username, first_name, last_name, certificate_type)
# Add a message
message = """
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course π! \n
Since you pass 3 out of 4 of the hands-on you get a Certificate of Completion π. \n
You can download your certificate below β¬οΈ \n
Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @mariakhalusova and @huggingface) π€ \n
You can try to get a Certificate of Excellence if you pass 100% of the hands-on, don't hesitate to check which unit you didn't pass and update these models.
"""
else:
# Not passed yet
certificate = Image.new("RGB", (100, 100), (255, 255, 255))
pdf = "./fail.pdf"
# Add a message
message = """
You didn't pass the minimum of 3 out of 4 of the hands-on to get a certificate of completion.
For more information about the certification process [check the course page on certification](https://huggingface.co/learn/audio-course/chapter8/certification).
Use the [self-evaluation space](https://huggingface.co/spaces/MariaK/Check-my-progress-Audio-Course) to see which assignments have not been completed.
"""
return certificate, message, pdf
def certification(hf_username, first_name, last_name):
passed, certificate_type = check_if_passed(hf_username)
certificate, message, pdf = create_certificate(passed, certificate_type, hf_username, first_name, last_name)
print("MESSAGE", message)
if passed:
visible = True
else:
visible = False
return message, pdf, certificate, output_row.update(visible=visible)
with gr.Blocks() as demo:
gr.Markdown(f"""
# Get your Hugging Face Audio Course Certificate π
The certification process is completely free:
- To get a *certificate of completion*: you need to **pass 3 out of 4 hands-on assignments**.
- To get a *certificate of excellence*: you need to **pass 4 out of 4 hands-on assignments**.
For more information about the certification process [check the course page on certification](https://huggingface.co/learn/audio-course/chapter8/certification).
Don't hesitate to share your certificate on Twitter (tag me @mariakhalusova and @huggingface) and on LinkedIn.
""")
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username (case sensitive)")
first_name = gr.Textbox(placeholder="Jane", label="Your First Name")
last_name = gr.Textbox(placeholder="Doe", label="Your Last Name")
check_progress_button = gr.Button(value="Check if I pass and get the certificate")
output_text = gr.components.Textbox()
with gr.Row(visible=True) as output_row:
output_pdf = gr.File()
output_img = gr.components.Image(type="pil")
check_progress_button.click(fn=certification, inputs=[hf_username, first_name, last_name], outputs=[output_text, output_pdf, output_img, output_row])
demo.launch(debug=True) |