File size: 1,695 Bytes
e15f1e0
9a229a7
993e75e
75eaa7d
dd97cd7
c592be6
1c8cf8d
993e75e
b376f35
c592be6
ad59b0f
e15f1e0
1c9cd05
 
 
9a229a7
1c9cd05
 
9a229a7
1c9cd05
9a229a7
1c9cd05
9a229a7
1c9cd05
 
 
01c2292
0a1beeb
8521de0
 
 
 
 
 
 
 
 
01c2292
8521de0
 
01c2292
8521de0
 
 
 
9a229a7
b411329
 
 
 
0a1beeb
 
b411329
49350d4
e15f1e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
from transformers import BertForQuestionAnswering
from transformers import BertTokenizerFast
import torch
from nltk.tokenize import word_tokenize
import timm

tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
# model = timm.create_model('hf_hub:pseudolab/AI_Tutor_BERT', pretrained=True)
#model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# def get_prediction(context, question):
#   inputs = tokenizer.encode_plus(question, context, return_tensors='pt').to(device)
#   outputs = model(**inputs)
  
#   answer_start = torch.argmax(outputs[0])  
#   answer_end = torch.argmax(outputs[1]) + 1 
  
#   answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
  
#   return answer
  
# def question_answer(context, question):
#   prediction = get_prediction(context,question)
#   return prediction

def split(text):
    context, question = '', ''
    act = False
    tmp = ''
    for t in text:
        tmp += t
        if len(tmp) == 4:
            tmp = tmp[1:]
            if tmp == '///':
                act = True

        if act == True:
            question += t

        if act == False:
            context += t
        
    return context[:-2], question[1:]
    
# def greet(texts):
#     context, question = split(texts)
#     answer = question_answer(context, question)
#     return answer
def greet(text):
    context, question = split(text)
    # answer = question_answer(context, question)
    return context

iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()