CountingMstar commited on
Commit
a457627
·
1 Parent(s): 75eaa7d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -41
app.py CHANGED
@@ -17,44 +17,6 @@ def get_prediction(context, question):
17
  answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
18
 
19
  return answer
20
-
21
- def normalize_text(s):
22
- """Removing articles and punctuation, and standardizing whitespace are all typical text processing steps."""
23
- import string, re
24
- def remove_articles(text):
25
- regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
26
- return re.sub(regex, " ", text)
27
- def white_space_fix(text):
28
- return " ".join(text.split())
29
- def remove_punc(text):
30
- exclude = set(string.punctuation)
31
- return "".join(ch for ch in text if ch not in exclude)
32
- def lower(text):
33
- return text.lower()
34
-
35
- return white_space_fix(remove_articles(remove_punc(lower(s))))
36
-
37
- def exact_match(prediction, truth):
38
- return bool(normalize_text(prediction) == normalize_text(truth))
39
-
40
- def compute_f1(prediction, truth):
41
- pred_tokens = normalize_text(prediction).split()
42
- truth_tokens = normalize_text(truth).split()
43
-
44
- # if either the prediction or the truth is no-answer then f1 = 1 if they agree, 0 otherwise
45
- if len(pred_tokens) == 0 or len(truth_tokens) == 0:
46
- return int(pred_tokens == truth_tokens)
47
-
48
- common_tokens = set(pred_tokens) & set(truth_tokens)
49
-
50
- # if there are no common tokens then f1 = 0
51
- if len(common_tokens) == 0:
52
- return 0
53
-
54
- prec = len(common_tokens) / len(pred_tokens)
55
- rec = len(common_tokens) / len(truth_tokens)
56
-
57
- return round(2 * (prec * rec) / (prec + rec), 2)
58
 
59
  def question_answer(context, question):
60
  prediction = get_prediction(context,question)
@@ -63,9 +25,9 @@ def question_answer(context, question):
63
  def greet(texts):
64
  question = texts[:len(texts)]
65
  answer = texts[len(texts):]
66
- for question, answer in texts:
67
- question_answer(context, question)
68
- return texts
69
 
70
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
71
  iface.launch()
 
17
  answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
18
 
19
  return answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def question_answer(context, question):
22
  prediction = get_prediction(context,question)
 
25
  def greet(texts):
26
  question = texts[:len(texts)]
27
  answer = texts[len(texts):]
28
+ # for question, answer in texts:
29
+ # question_answer(context, question)
30
+ return answer
31
 
32
  iface = gr.Interface(fn=greet, inputs="text", outputs="text")
33
  iface.launch()