File size: 3,854 Bytes
82469d1 1cf432c 82469d1 9e6db6c cc3479e 82469d1 9e6db6c 82469d1 0cb1e78 82469d1 5b0121f 82469d1 5b0121f 1cf432c 82469d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
import numpy as np
import random
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from utils import randomize_seed_fn
MAX_SEED = np.iinfo(np.int32).max
def model_load():
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# load lora weight
pipe.load_lora_weights("jjuun/vivid_color_style")
return pipe.to('cuda')
def sdxl_process(seed, prompt, additional_prompt, negative_prompt, num_steps, guidance_scale):
pipe = model_load()
generator = torch.Generator("cuda")
generator.manual_seed(int(seed))
special_prompt = 'jjj, scratch art style'
prompt = f'{special_prompt}, {prompt}, with a black background'
output = pipe(prompt, additional_prompt, negative_prompt=negative_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale,
generator=generator).images[0]
return output
title = "🌈 Colorful illustration"
description_en = "🚀 How to use: please make sure to include 'a colorful' in prompt and click Run button!"
def create_demo():
with gr.Blocks() as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(f"<h3 style='text-align: center'>{description_en}</h3>")
gr.Markdown(f"<a href='https://github.com/jjuun0'><img src='https://img.shields.io/badge/GitHub-181717?style=flat-square&logo=GitHub&logoColor=white'/></a>")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(label="Additional prompt", value="")
n_prompt = gr.Textbox(
label="Negative prompt",
value="",
)
with gr.Column():
result = gr.Image(label="Output")
result_seed = gr.Textbox(label="Used seed")
gr.Examples(
examples= [["a colorful fox", "20", "9", "0", "", "", "examples/fox.png"],
["a colorful messi", "20", "9", "191251724", "", "", "examples/messi.png"],
["a colorful pyramid", "20", "9", "0", "", "", "examples/pyramid.png"],
["a colorful octopus playing violin", "20", "9", "0", "", "", "examples/octopus.png"]],
inputs = [prompt, num_steps, guidance_scale, seed, a_prompt, n_prompt, result]
)
inputs = [
seed,
prompt,
a_prompt,
n_prompt,
num_steps,
guidance_scale,
]
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=result_seed,
queue=False,
api_name=False,
).then(
fn=sdxl_process,
inputs=inputs,
outputs=result,
api_name=False,
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue().launch()
|