import gradio as gr import numpy as np import random import torch from diffusers import StableDiffusionXLPipeline, AutoencoderKL from utils import randomize_seed_fn MAX_SEED = np.iinfo(np.int32).max def model_load(): vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16 ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # load lora weight pipe.load_lora_weights("jjuun/vivid_color_style") return pipe.to('cuda') def sdxl_process(seed, prompt, additional_prompt, negative_prompt, num_steps, guidance_scale): pipe = model_load() generator = torch.Generator("cuda") generator.manual_seed(int(seed)) special_prompt = 'jjj, scratch art style' prompt = f'{special_prompt}, {prompt}, with a black background' output = pipe(prompt, additional_prompt, negative_prompt=negative_prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator).images[0] return output title = "🌈 Colorful illustration" description_en = "🚀 How to use: please make sure to include 'a colorful' in prompt and click Run button!" def create_demo(): with gr.Blocks() as demo: gr.Markdown(f"

{title}

") gr.Markdown(f"

{description_en}

") gr.Markdown(f"") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt") run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1) guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) a_prompt = gr.Textbox(label="Additional prompt", value="") n_prompt = gr.Textbox( label="Negative prompt", value="", ) with gr.Column(): result = gr.Image(label="Output") result_seed = gr.Textbox(label="Used seed") gr.Examples( examples= [["a colorful fox", "20", "9", "0", "", "", "examples/fox.png"], ["a colorful messi", "20", "9", "191251724", "", "", "examples/messi.png"], ["a colorful pyramid", "20", "9", "0", "", "", "examples/pyramid.png"], ["a colorful octopus playing violin", "20", "9", "0", "", "", "examples/octopus.png"]], inputs = [prompt, num_steps, guidance_scale, seed, a_prompt, n_prompt, result] ) inputs = [ seed, prompt, a_prompt, n_prompt, num_steps, guidance_scale, ] run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=result_seed, queue=False, api_name=False, ).then( fn=sdxl_process, inputs=inputs, outputs=result, api_name=False, ) return demo if __name__ == "__main__": demo = create_demo() demo.queue().launch()