Spaces: Paused
Paused
from transformers import T5TokenizerFast, T5ForConditionalGeneration, GenerationConfig | |
from model import Model | |
class T5(Model): | |
def __init__(self, | |
model_dir:str='./models/pko_t5_COMU_patience10', | |
max_input_length:int=64, | |
max_target_length:int=64 | |
): | |
self.model = T5ForConditionalGeneration.from_pretrained(model_dir) | |
self.tokenizer = T5TokenizerFast.from_pretrained(model_dir) | |
self.gen_config = GenerationConfig.from_pretrained(model_dir, 'gen_config.json') | |
self.max_input_length = max_input_length | |
self.max_target_length = max_target_length | |
self.INPUT_FORMAT = 'qa question: <INPUT>' | |
# add tokens | |
self.tokenizer.add_tokens(["#νμ#", "#μ²μ#", "#(λ¨μ)μ²μ#", "#(λ¨μ)νμ#", "#(μ¬μ)μ²μ#", "(μ¬μ)νμ"]) | |
self.model.resize_token_embeddings(len(self.tokenizer)) | |
self.model.config.max_length = max_target_length | |
self.tokenizer.model_max_length = max_target_length | |
def generate(self, inputs): | |
inputs = self.INPUT_FORMAT.replace("<INPUT>", inputs) | |
input_ids = self.tokenizer(inputs, max_length=self.max_input_length, truncation=True, return_tensors="pt") | |
output_tensor = self.model.generate(**input_ids, generation_config=self.gen_config) | |
output_ids = self.tokenizer.batch_decode(output_tensor, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
outputs = str(output_ids) | |
outputs = outputs.replace('[', '').replace(']', '').replace("'", '').replace("'", '') | |
return outputs |