ElPlaguister commited on
Commit
80fb1ef
·
1 Parent(s): 00e9c68

Feat KoAlpaca Tensor Parallelism

Browse files
Files changed (2) hide show
  1. koalpaca.py +5 -3
  2. requirements.txt +1 -0
koalpaca.py CHANGED
@@ -2,13 +2,12 @@ import torch
2
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
3
  from peft import PeftModel, PeftConfig
4
  from model import Model
5
- from accelerate import Accelerator
6
 
7
  class KoAlpaca(Model):
8
  def __init__(self):
9
  peft_model_id = "4n3mone/Komuchat-koalpaca-polyglot-12.8B"
10
  config = PeftConfig.from_pretrained(peft_model_id)
11
- # self.accelerator = Accelerator()
12
  self.bnb_config = BitsAndBytesConfig(
13
  load_in_4bit=True,
14
  bnb_4bit_use_double_quant=True,
@@ -17,6 +16,8 @@ class KoAlpaca(Model):
17
  )
18
  #self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=self.bnb_config, device_map={"":0})
19
  self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=self.bnb_config, device_map='auto')
 
 
20
  self.model = PeftModel.from_pretrained(self.model, peft_model_id)
21
  self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
22
  self.gen_config = GenerationConfig.from_pretrained('./models/koalpaca', 'gen_config.json')
@@ -34,4 +35,5 @@ class KoAlpaca(Model):
34
  generation_config=self.gen_config
35
  )
36
  outputs = self.tokenizer.decode(output_ids[0]).split("### 답변: ")[-1]
37
- return outputs
 
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
3
  from peft import PeftModel, PeftConfig
4
  from model import Model
5
+ import tensor_parallel as tp
6
 
7
  class KoAlpaca(Model):
8
  def __init__(self):
9
  peft_model_id = "4n3mone/Komuchat-koalpaca-polyglot-12.8B"
10
  config = PeftConfig.from_pretrained(peft_model_id)
 
11
  self.bnb_config = BitsAndBytesConfig(
12
  load_in_4bit=True,
13
  bnb_4bit_use_double_quant=True,
 
16
  )
17
  #self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=self.bnb_config, device_map={"":0})
18
  self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=self.bnb_config, device_map='auto')
19
+ print(self.model.device)
20
+ self.model = tp.tensor_parallel(self.model, [*next(self.model.parameters()).device])
21
  self.model = PeftModel.from_pretrained(self.model, peft_model_id)
22
  self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
23
  self.gen_config = GenerationConfig.from_pretrained('./models/koalpaca', 'gen_config.json')
 
35
  generation_config=self.gen_config
36
  )
37
  outputs = self.tokenizer.decode(output_ids[0]).split("### 답변: ")[-1]
38
+ return outputs
39
+
requirements.txt CHANGED
@@ -3,4 +3,5 @@ gradio==4.1.1
3
  numpy==1.26.1
4
  pandas==2.1.2
5
  torch==2.0.1
 
6
  git+https://github.com/huggingface/peft.git
 
3
  numpy==1.26.1
4
  pandas==2.1.2
5
  torch==2.0.1
6
+ tensor_parallel==2.0.0
7
  git+https://github.com/huggingface/peft.git