from transformers import T5TokenizerFast, T5ForConditionalGeneration, GenerationConfig
from model import Model
class T5(Model):
def __init__(self,
name:str='T5',
model_dir:str='./models/pko_t5_COMU_patience10',
max_input_length:int=64,
max_target_length:int=64
):
self.name = name
self.model = T5ForConditionalGeneration.from_pretrained(model_dir)
self.tokenizer = T5TokenizerFast.from_pretrained(model_dir)
self.gen_config = GenerationConfig.from_pretrained(model_dir, 'gen_config.json')
self.max_input_length = max_input_length
self.max_target_length = max_target_length
self.INPUT_FORMAT = 'qa question: '
# add tokens
self.tokenizer.add_tokens(["#화자#", "#청자#", "#(남자)청자#", "#(남자)화자#", "#(여자)청자#", "(여자)화자"])
self.model.resize_token_embeddings(len(self.tokenizer))
self.model.config.max_length = max_target_length
self.tokenizer.model_max_length = max_target_length
super().__init__()
def generate(self, inputs):
inputs = self.INPUT_FORMAT.replace("", inputs)
input_ids = self.tokenizer(inputs, max_length=self.max_input_length, truncation=True, return_tensors="pt")
output_tensor = self.model.generate(**input_ids, generation_config=self.gen_config)
output_ids = self.tokenizer.batch_decode(output_tensor, skip_special_tokens=True, clean_up_tokenization_spaces=True)
outputs = str(output_ids)
outputs = outputs.replace('[', '').replace(']', '').replace("'", '').replace("'", '')
return outputs