from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM from peft import PeftModel, PeftConfig import torch import gradio as gr import random from textwrap import wrap # Functions to Wrap the Prompt Correctly def wrap_text(text, width=90): lines = text.split('\n') wrapped_lines = [textwrap.fill(line, width=width) for line in lines] wrapped_text = '\n'.join(wrapped_lines) return wrapped_text def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): """ Generates text using a large language model, given a user input and a system prompt. Args: user_input: The user's input text to generate a response for. system_prompt: Optional system prompt. Returns: A string containing the generated text. """ # Combine user input and system prompt formatted_input = f"[INST]{system_prompt} {user_input}[/INST]" # Encode the input text encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) # Generate a response using the model output = model.generate( **model_inputs, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, pad_token_id=model.config.eos_token_id, temperature=0.1, do_sample=True ) # Decode the response response_text = tokenizer.decode(output[0], skip_special_tokens=True) return response_text # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Use the base model's ID base_model_id = "mistralai/Mistral-7B-v0.1" model_directory = "Tonic/mistralmed" # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left") # tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' # Specify the configuration class for the model # model_config = AutoConfig.from_pretrained(base_model_id) # Load the PEFT model with the specified configuration # peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config) # Load the PEFT model peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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") peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True) peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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") class ChatBot: def __init__(self): self.history = [] class ChatBot: def __init__(self): # Initialize the ChatBot class with an empty history self.history = [] def predict(self, user_input, system_prompt="You are an expert medical analyst:"): # Combine the user's input with the system prompt formatted_input = f"[INST]{system_prompt} {user_input}[/INST]" # Encode the formatted input using the tokenizer user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") # Generate a response using the PEFT model response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) # Decode the generated response to text response_text = tokenizer.decode(response[0], skip_special_tokens=True) return response_text # Return the generated response bot = ChatBot() title = "자소서기반 면접 시뮬레이션 chat bot (this template based on Tonic's MistralMed Chat)" #description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) 또는 이 공간을 복제하고 로컬 또는 🤗HuggingFace에서 사용할 수 있습니다. [Discord에서 함께 만들기 위해 Discord에 가입하십시오](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." #examples = [["[Question:] What is the proper treatment for buccal herpes?", # "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]] iface = gr.Interface( fn=bot.predict, title=title, description=description, examples=examples, inputs=["text", "text"], # Take user input and system prompt separately outputs="text", theme="ParityError/Anime" ) iface.launch()