Spaces:
Sleeping
Sleeping
seriouspark
commited on
Commit
โข
ba79e72
1
Parent(s):
80ae5a7
put inference model
Browse files
app.py
CHANGED
@@ -1,15 +1,281 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
iface = gr.Interface(
|
11 |
-
fn=
|
12 |
inputs = gr.Textbox(lines=2, placeholder= '๋น์ ์ ๊ธ์ ๋ฃ์ด๋ณด์ธ์'),
|
13 |
-
outputs =
|
14 |
)
|
15 |
-
iface.launch(share =True)
|
|
|
1 |
+
import datetime
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.optim import Adam
|
12 |
+
from tqdm.notebook import tqdm
|
13 |
+
from torch import nn
|
14 |
+
from transformers import BertModel
|
15 |
+
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
def split_essay_to_sentence(origin_essay):
|
21 |
+
origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], [])
|
22 |
+
essay_sent = [a for a in origin_essay_sentence if len(a) > 0]
|
23 |
+
return essay_sent
|
24 |
+
|
25 |
+
def get_first_extraction(text_sentence):
|
26 |
+
row_dict = {}
|
27 |
+
for row in tqdm(text_sentence):
|
28 |
+
question = 'what is the feeling?'
|
29 |
+
answer = question_answerer(question=question, context=row)
|
30 |
+
row_dict[row] = answer
|
31 |
+
return row_dict
|
32 |
+
|
33 |
+
|
34 |
+
def get_sent_labeldata():
|
35 |
+
label =pd.read_csv('./rawdata/sentimental_label.csv', encoding = 'cp949', header = None)
|
36 |
+
label[1] = label[1].apply(lambda x : re.findall(r'[๊ฐ-ํฃ]+', x)[0])
|
37 |
+
label_dict =label[label.index % 10 == 0].set_index(0).to_dict()[1]
|
38 |
+
emo2idx = {v : k for k, v in enumerate(label_dict.items())}
|
39 |
+
idx2emo = {v : k[1] for k, v in emo2idx.items()}
|
40 |
+
return emo2idx, idx2emo
|
41 |
+
|
42 |
+
def load_model():
|
43 |
+
|
44 |
+
class BertClassifier(nn.Module):
|
45 |
+
|
46 |
+
def __init__(self, dropout = 0.3):
|
47 |
+
super(BertClassifier, self).__init__()
|
48 |
+
|
49 |
+
self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
|
50 |
+
self.dropout = nn.Dropout(dropout)
|
51 |
+
self.linear = nn.Linear(768, 6)
|
52 |
+
self.relu = nn.ReLU()
|
53 |
+
|
54 |
+
def forward(self, input_id, mask):
|
55 |
+
_, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
|
56 |
+
dropout_output = self.dropout(pooled_output)
|
57 |
+
linear_output = self.linear(dropout_output)
|
58 |
+
final_layer= self.relu(linear_output)
|
59 |
+
|
60 |
+
return final_layer
|
61 |
+
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
|
64 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
65 |
+
cls_model = BertClassifier()
|
66 |
+
criterion = nn.CrossEntropyLoss()
|
67 |
+
model_name = 'bert-base-multilingual-cased'
|
68 |
+
PATH = './model' + '/' + model_name + '_' + '2023102410'
|
69 |
+
print(PATH)
|
70 |
+
cls_model = torch.load(PATH)
|
71 |
+
#cls_model.load_state_dict(torch.load(PATH))
|
72 |
+
return tokenizer, cls_model
|
73 |
+
|
74 |
+
|
75 |
+
class myDataset_for_infer(torch.utils.data.Dataset):
|
76 |
+
def __init__(self, X):
|
77 |
+
self.X = X
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.X)
|
81 |
+
|
82 |
+
def __getitem__(self,idx):
|
83 |
+
sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 128, truncation = True)
|
84 |
+
return sentences
|
85 |
+
|
86 |
+
|
87 |
+
def infer_data(model, main_feeling_keyword):
|
88 |
+
#ds = myDataset_for_infer()
|
89 |
+
df_infer = myDataset_for_infer(main_feeling_keyword)
|
90 |
+
|
91 |
+
infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16)
|
92 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
93 |
+
|
94 |
+
if device == 'cuda':
|
95 |
+
model = model.cuda()
|
96 |
+
|
97 |
+
result_list = []
|
98 |
+
with torch.no_grad():
|
99 |
+
for idx, infer_input in tqdm(enumerate(infer_dataloader)):
|
100 |
+
mask = infer_input['attention_mask'].to(device)
|
101 |
+
input_id = infer_input['input_ids'].squeeze(1).to(device)
|
102 |
+
|
103 |
+
output = model(input_id, mask)
|
104 |
+
result = np.argmax(F.softmax(output, dim=0).cpu(), axis=1).numpy()
|
105 |
+
result_list.extend(result)
|
106 |
+
return result_list
|
107 |
+
|
108 |
+
def get_word_emotion_pair(cls_model, origin_essay_sentence):
|
109 |
|
110 |
+
from konlpy.tag import Okt
|
111 |
|
112 |
+
okt = Okt()
|
113 |
+
#text = '๋๋ ์ ์๋ง๋ง ๋ฏธ์ํ์๊น'
|
114 |
+
def get_noun(text):
|
115 |
+
noun_list = [k for k, v in okt.pos(text) if (v == 'Noun' and len(k) > 1)]
|
116 |
+
return noun_list
|
117 |
+
def get_adj(text):
|
118 |
+
adj_list = [k for k, v in okt.pos(text) if (v == 'Adjective') and (len(k) > 1)]
|
119 |
+
return adj_list
|
120 |
+
def get_verb(text):
|
121 |
+
verb_list = [k for k, v in okt.pos(text) if (v == 'Verb') and (len(k) > 1)]
|
122 |
+
return verb_list
|
123 |
|
124 |
+
result_list = infer_data(cls_model, origin_essay_sentence)
|
125 |
+
final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list})
|
126 |
+
final_result['emotion'] = final_result['label'].map(idx2emo)
|
127 |
+
final_result['noun_list'] = final_result['text'].map(get_noun)
|
128 |
+
final_result['adj_list'] = final_result['text'].map(get_adj)
|
129 |
+
final_result['verb_list'] = final_result['text'].map(get_verb)
|
130 |
+
final_result['title'] = 'none'
|
131 |
+
file_made_dt = datetime.datetime.now()
|
132 |
+
file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d')
|
133 |
+
os.makedirs(f'./result/{file_made_dt_str}/', exist_ok = True)
|
134 |
+
final_result.to_csv(f"./result/{file_made_dt_str}/essay_result.csv", index = False)
|
135 |
|
136 |
+
return final_result, file_made_dt_str
|
137 |
|
138 |
+
|
139 |
+
|
140 |
+
def get_essay_base_analysis(file_made_dt_str):
|
141 |
+
essay1 = pd.read_csv(f"./result/{file_name_dt}/essay_result.csv")
|
142 |
+
essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x))
|
143 |
+
essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x)))
|
144 |
+
essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x))
|
145 |
+
essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x)))
|
146 |
+
essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1)
|
147 |
+
essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x))
|
148 |
+
essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x)))
|
149 |
+
essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x))
|
150 |
+
essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x))
|
151 |
+
d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index()
|
152 |
+
d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x)))
|
153 |
+
d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x)))
|
154 |
+
|
155 |
+
# ๋ฌธ์ฅ ๊ธฐ์ค ์ต๊ณ ๊ฐ์
|
156 |
+
essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1)
|
157 |
+
|
158 |
+
emo_vocab_dict = {}
|
159 |
+
for k, v in essay1[['emotion','noun_list']].values:
|
160 |
+
for vocab in v:
|
161 |
+
if (k, 'noun', vocab) not in emo_vocab_dict:
|
162 |
+
emo_vocab_dict[(k, 'noun', vocab)] = 0
|
163 |
+
|
164 |
+
emo_vocab_dict[(k, 'noun', vocab)] += 1
|
165 |
+
|
166 |
+
for k, v in essay1[['emotion','adj_list']].values:
|
167 |
+
for vocab in v:
|
168 |
+
if (k, 'adj', vocab) not in emo_vocab_dict:
|
169 |
+
emo_vocab_dict[(k, 'adj', vocab)] = 0
|
170 |
+
|
171 |
+
emo_vocab_dict[(k, 'adj', vocab)] += 1
|
172 |
+
vocab_emo_cnt_dict = {}
|
173 |
+
for k, v in essay1[['emotion','noun_list']].values:
|
174 |
+
for vocab in v:
|
175 |
+
if (vocab, 'noun') not in vocab_emo_cnt_dict:
|
176 |
+
vocab_emo_cnt_dict[('noun', vocab)] = {}
|
177 |
+
if k not in vocab_emo_cnt_dict[( 'noun', vocab)]:
|
178 |
+
vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0
|
179 |
+
|
180 |
+
vocab_emo_cnt_dict[('noun', vocab)][k] += 1
|
181 |
+
|
182 |
+
for k, v in essay1[['emotion','adj_list']].values:
|
183 |
+
for vocab in v:
|
184 |
+
if ('adj', vocab) not in vocab_emo_cnt_dict:
|
185 |
+
vocab_emo_cnt_dict[( 'adj', vocab)] = {}
|
186 |
+
if k not in vocab_emo_cnt_dict[( 'adj', vocab)]:
|
187 |
+
vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0
|
188 |
+
|
189 |
+
vocab_emo_cnt_dict[('adj', vocab)][k] += 1
|
190 |
+
|
191 |
+
vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T
|
192 |
+
vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1)
|
193 |
+
# ๋จ์ด๋ณ ์ต๊ณ ๊ฐ์ ๋ฐ ๊ฐ์ ๊ฐ์
|
194 |
+
all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
|
195 |
+
|
196 |
+
# ๋จ์ด๋ณ ์ต๊ณ ๊ฐ์ ๋ฐ ๊ฐ์ ๊ฐ์ , ํ์ฉ์ฌ ํฌํจ ์
|
197 |
+
adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
|
198 |
+
|
199 |
+
# ๋ช
์ฌ๋ง ์ฌ์ฉ ์
|
200 |
+
noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False)
|
201 |
+
|
202 |
+
final_file_name = f"essay_all_vocab_result.csv"
|
203 |
+
adj_file_name = f"essay_adj_vocab_result.csv"
|
204 |
+
noun_file_name = f"essay_noun_vocab_result.csv"
|
205 |
+
|
206 |
+
os.makedirs(f'./result/{file_made_dt_str}/', exist_ok = True)
|
207 |
+
|
208 |
+
final_result.to_csv(f"./result/{file_made_dt_str}/essay_all_vocab_result.csv", index = False)
|
209 |
+
adj_result.to_csv(f"./result/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False)
|
210 |
+
noun_result.to_csv(f"./result/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False)
|
211 |
+
|
212 |
+
return final_result, adj_result, noun_result, essay_summary, file_made_dt_str
|
213 |
+
|
214 |
+
|
215 |
+
from transformers import pipeline
|
216 |
+
model_name = 'AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru'
|
217 |
+
question_answerer = pipeline("question-answering", model=model_name)
|
218 |
+
|
219 |
+
class BertClassifier(nn.Module):
|
220 |
+
|
221 |
+
def __init__(self, dropout = 0.3):
|
222 |
+
super(BertClassifier, self).__init__()
|
223 |
+
|
224 |
+
self.bert= BertModel.from_pretrained('bert-base-multilingual-cased')
|
225 |
+
self.dropout = nn.Dropout(dropout)
|
226 |
+
self.linear = nn.Linear(768, 6)
|
227 |
+
self.relu = nn.ReLU()
|
228 |
+
|
229 |
+
def forward(self, input_id, mask):
|
230 |
+
_, pooled_output = self.bert(input_ids = input_id, attention_mask = mask, return_dict = False)
|
231 |
+
dropout_output = self.dropout(pooled_output)
|
232 |
+
linear_output = self.linear(dropout_output)
|
233 |
+
final_layer= self.relu(linear_output)
|
234 |
+
|
235 |
+
return final_layer
|
236 |
+
|
237 |
+
|
238 |
+
def all_process(origin_essay):
|
239 |
+
essay_sent =split_essay_to_sentence(origin_essay)
|
240 |
+
row_dict = {}
|
241 |
+
for row in tqdm(essay_sent):
|
242 |
+
question = 'what is the feeling?'
|
243 |
+
answer = question_answerer(question=question, context=row)
|
244 |
+
row_dict[row] = answer
|
245 |
+
emo2idx, idx2emo = get_sent_labeldata()
|
246 |
+
tokenizer, cls_model = load_model()
|
247 |
+
final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent)
|
248 |
+
all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt)
|
249 |
+
|
250 |
+
summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30]
|
251 |
+
with open(f'./result/{file_name_dt}/summary.json','w') as f:
|
252 |
+
json.dump( essay_summary.to_json(),f)
|
253 |
+
with open(f'./result/{file_made_dt_str}/all_result.json','w') as f:
|
254 |
+
json.dump( all_result.to_json(),f)
|
255 |
+
with open(f'./result/{file_made_dt_str}/adj_result.json','w') as f:
|
256 |
+
json.dump( adj_result.to_json(),f)
|
257 |
+
with open(f'./result/{file_made_dt_str}/noun_result.json','w') as f:
|
258 |
+
json.dump( noun_result.to_json(),f)
|
259 |
+
return essay_summary
|
260 |
+
|
261 |
+
import gradio as gr
|
262 |
+
outputs = [gr.Dataframe(row_count = (6, "dynamic"),
|
263 |
+
col_count=(2, "dynamic"),
|
264 |
+
label="Essay Summary based on Words")
|
265 |
+
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
266 |
+
|
267 |
+
]
|
268 |
+
|
269 |
+
|
270 |
+
#row_count = (10, "dynamic"),
|
271 |
+
#col_count=(9, "dynamic"),
|
272 |
+
#label="Results",
|
273 |
+
#headers=['type','word','์ฌํ', '๋ถ๋
ธ', '๊ธฐ์จ', '๋ถ์', '์์ฒ', '๋นํฉ', 'total'])
|
274 |
+
#]
|
275 |
+
|
276 |
iface = gr.Interface(
|
277 |
+
fn=all_process,
|
278 |
inputs = gr.Textbox(lines=2, placeholder= '๋น์ ์ ๊ธ์ ๋ฃ์ด๋ณด์ธ์'),
|
279 |
+
outputs = outputs,
|
280 |
)
|
281 |
+
iface.launch(share =True)
|