Spaces:
Runtime error
Runtime error
File size: 5,917 Bytes
71d673c a931541 ff647b0 1de73a8 789718b ff647b0 84a8d96 2dcf4b6 e49932c 84a8d96 e49932c 3f41985 a973402 3f41985 a973402 f19aeec e49932c d02a40d 84a8d96 e49932c 776a79b c90d42e d02a40d c90d42e 544159d c90d42e 544159d c90d42e e49932c 50efdde c90d42e d02a40d e49932c c90d42e e49932c a1f6dfc d02a40d 71d673c a1f6dfc 71d673c 7e691d1 71d673c 544159d 71d673c 8907f55 71d673c a9764fc 1f0a89c 7a02029 7e691d1 e49932c 7e691d1 544159d 71d673c 544159d 7e691d1 544159d e49932c 1f0a89c e49932c 71d673c e49932c 1637cee c7cb9a5 0fd1c62 71d673c 0fd1c62 c7cb9a5 7a02029 71d673c 7a02029 1f0a89c 7a02029 1637cee 0fd1c62 7a02029 c7cb9a5 a931541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
"""
Find the inspiration for this project as well as the pretrained model
we used here: https://github.com/bearpelican/musicautobot
"""
import gradio as gr
from musicautobot.utils.setup_musescore import play_wav
from music21.midi.translate import midiFileToStream
from pathlib import Path
from midi2audio import FluidSynth
# from musicautobot.numpy_encode import *
from musicautobot.config import default_config
from musicautobot.music_transformer import *
from musicautobot.utils.midifile import *
# from musicautobot.utils.file_processing import process_all
import pickle
import subprocess
import os
print(os.getcwd())
# Load the stored data. This is needed to generate the vocab.
print('Loading data to build vocabulary.')
data_dir = Path('.')
data = load_data(data_dir, 'data.pkl')
from huggingface_hub import hf_hub_download
print('Downloading model.')
model_cache_path = hf_hub_download(repo_id="psistolar/musicautobot-fine1", filename="model.pth")
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
# Default config options
config = default_config()
config['encode_position'] = True
print("Building model.")
# Load our fine-tuned model
learner = music_model_learner(
data,
config=config.copy(),
pretrained_path=model_cache_path
)
print("Ready to use.")
musical_letters = 'abcdefg'
from music21 import note
def sonify_text(text, sentiment):
name = Path('C Major Scale.midi')
item = MusicItem.from_file(name, data.vocab)
note_names = [f"{letter.upper()}4" for letter in text.lower() if letter in musical_letters]
p = music21.stream.Part()
if sentiment == 'NEGATIVE':
# If negative, use TODO
p.append(music21.chord.Chord('A3 C4 E4', type='half')) # i
p.append(music21.chord.Chord('F3 A4 C4', type='half')) # VI
p.append(music21.chord.Chord('C3 E3 G3', type='half')) # III
p.append(music21.chord.Chord('G3 B3 D4', type='half')) # VII
else:
# If positive, use a partial progression I-V-vi in C Major.
p.append(music21.chord.Chord('C4 E4 G4', type='half')) # I
p.append(music21.chord.Chord('G3 B3 D4', type='half')) # V
p.append(music21.chord.Chord('A3 C4 E4', type='half')) # vi
notes = []
for note_name in note_names:
note_obj = note.Note(note_name)
note_obj.duration.type = "quarter"
p.append(note_obj)
s = music21.stream.Score([p])
musical_seed = MusicItem.from_stream(s, data.vocab)
return musical_seed
def process_midi(MIDI_File, Text_to_Sonify, Randomness, Amount_of_Music_to_Add):
if MIDI_File is not None:
name = Path(MIDI_File.name)
else:
name = Path('C Major Scale.midi')
sonification = False
if MIDI_File is None and Text_to_Sonify is not None:
sonification = True
# create the model input object
if sonification:
sentiment_analysis = classifier(Text_to_Sonify)[0]
sentiment = sentiment_analysis['label']
score = sentiment_analysis['score']
item = sonify_text(Text_to_Sonify, sentiment)
# the lower our confidence in the sentiment, the more randomness we inject
score = max(0.25, score)
temp = Randomness / (100 * score)
else:
item = MusicItem.from_file(name, data.vocab)
temp = Randomness / 100
# full is the prediction appended to the input
pred, full = learner.predict(
item,
n_words=Amount_of_Music_to_Add,
temperatures=(temp, temp)
)
# convert to stream and then MIDI file
if sonification:
# do not replay the musical seed if sonifying
stream = pred.to_stream()
else:
stream = full.to_stream()
out = music21.midi.translate.streamToMidiFile(stream)
# save MIDI file
out.open('result.midi', 'wb')
out.write()
out.close()
# use fluidsynth to convert MIDI to WAV so the user can hear the output
sound_font = "/usr/share/sounds/sf2/FluidR3_GM.sf2"
FluidSynth(sound_font).midi_to_audio('result.midi', 'result.wav')
# TODO: if we can personalize the file names, let's do that with the text
return 'result.wav', 'result.midi'
midi_file_desc = """Upload your own MIDI file here (try to keep it small without any fun time signatures).
If you do not have a MIDI file, add some text and we will turn it into music!
"""
article = """# Pop Music Transformer
We are using a language model to create music by treating a musical standard MIDI a simple text, with tokens for note values, note duration, and separations to denote movement forward in time.
This is all following the great work you can find [at this repo](https://github.com/bearpelican/musicautobot). Moreover check out [their full web app](http://musicautobot.com/). We use the pretrained model they created as well as the utilities for converting between MIDI, audio streams, numpy encodings, and WAV files.
## Sonification
This is the process of turning something not inherently musical into music. Here we do something pretty simple. We take your input text "pretty cool", get a sentiment score (hard coded right now, model TODO), and use a major progression if it's positive and a minor progression if it's negative, and then factor the score into the randomness of the generated music. We also take the text and extract a melody by taking any of the letters from A to G, which in the example is just "E C". With the simple "E C" melody and a major progression a musical idea is generated.
"""
iface = gr.Interface(
fn=process_midi,
inputs=[
gr.inputs.File(optional=True, label=midi_file_desc),
"text",
gr.inputs.Slider(0, 250, default=100, step=50),
gr.inputs.Radio([100, 200, 500], type="value", default=100)
],
outputs=["audio", "file"],
article=article
# examples=['C major scale.midi']
)
iface.launch() |