Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,108 Bytes
f18cdf1 f578dba f18cdf1 f578dba f18cdf1 f578dba 2b1a300 c1cba4f 2b1a300 f18cdf1 f578dba f18cdf1 e414859 f578dba e414859 f578dba e414859 2b1a300 2b8c4c9 f578dba 2b8c4c9 2b1a300 f18cdf1 f578dba 2b8c4c9 f18cdf1 e414859 2b8c4c9 2b1a300 e414859 2b1a300 e414859 f578dba e414859 f578dba e414859 2b1a300 e414859 f578dba 2b1a300 e414859 f578dba e414859 d630101 f578dba e414859 2b1a300 e414859 2b1a300 e414859 2b1a300 e414859 f578dba 2b1a300 e414859 f578dba e414859 2b1a300 e414859 dcce2ac e414859 2b1a300 f578dba 2b1a300 e414859 f578dba 7e0dde7 e414859 f578dba e414859 f578dba 2b1a300 e414859 2b1a300 f578dba 2b1a300 f578dba 2b1a300 7e0dde7 2b1a300 e414859 2b1a300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
"""
aggregate.py - module for 'reducing' multiple 'summary chunks' into one
an overly complicated class for legacy compatibility reasons, for usage of the
2024 map-reduce models see hf.co/pszemraj/bart-large-summary-map-reduce#usage
"""
import logging
import pprint as pp
import time
import torch
from transformers import GenerationConfig, pipeline
# Setting up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
class BatchAggregator:
"""
BatchAggregator is a class for aggregating text from multiple sources.
Usage:
from aggregate import BatchAggregator
aggregator = BatchAggregator()
agg = aggregator.infer_aggregate(["This is a test", "This is another test"])
print(agg)
"""
GENERIC_CONFIG = GenerationConfig(
max_new_tokens=512,
num_beams=4,
early_stopping=True,
do_sample=False,
truncation=True,
)
def __init__(
self,
model_name: str = "pszemraj/bart-large-summary-map-reduce",
force_cpu: bool = False,
**kwargs,
):
"""
__init__ initializes the BatchAggregator class.
:param str model_name: model name to use, default: "pszemraj/bart-large-summary-map-reduce"
:param bool force_cpu: force the model to run on CPU, default: False
"""
self.device = None
self.is_compiled = False
self.model_name = None
self.aggregator = None
self.force_cpu = force_cpu
self.logger = logging.getLogger(__name__)
self.init_model(model_name)
def init_model(self, model_name: str) -> None:
"""
Initialize the model.
:param model_name: The name of the model to use.
"""
# Free up memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.logger.info(f"Setting model to {model_name}")
self.model_name = model_name
self.aggregator = self._create_pipeline(model_name)
self._configure_model()
def _create_pipeline(
self, model_name: str = "pszemraj/bart-large-summary-map-reduce"
) -> pipeline:
"""
_create_pipeline creates a pipeline for the model.
:param str model_name: model name to use
:return pipeline: the pipeline for the model
:raises Exception: if the pipeline cannot be created
"""
device_map = (
"auto" if torch.cuda.is_available() and not self.force_cpu else "cpu"
)
try:
self.logger.info(
f"Creating pipeline with model {model_name} on device {device_map}"
)
return pipeline(
"text2text-generation",
model=model_name,
device_map=device_map,
torch_dtype=torch.float32,
)
except Exception as e:
self.logger.error(f"Failed to create pipeline: {e}")
raise
def _configure_model(self):
"""
Configure the model for generation.
"""
try:
self.aggregator.model = torch.compile(self.aggregator.model)
self.is_compiled = True
except Exception as e:
self.logger.warning(f"Could not compile model with Torch 2.0: {e}")
self._set_default_generation_config()
self.logger.info(self.aggregator.model.generation_config.to_json_string())
def _set_default_generation_config(self):
"""
Set the default generation configuration for the model.
"""
self.aggregator.model.generation_config.update(
**self.GENERIC_CONFIG.to_diff_dict()
)
def update_generation_config(self, **kwargs):
"""
Update the generation configuration with the specified parameters.
Args:
**kwargs: The parameters to update in the generation configuration.
"""
self.logger.info(f"Updating generation config with {pp.pformat(kwargs)}")
self.aggregator.model.generation_config.update(**kwargs)
def get_generation_config(self) -> dict:
"""
Get the current generation configuration.
Returns:
dict: The current generation configuration.
"""
return self.aggregator.model.generation_config.to_dict()
def update_loglevel(self, level: str = "INFO"):
"""
Update the log level.
Args:
level (str): The log level to set. Defaults to "INFO".
"""
self.logger.setLevel(level)
def infer_aggregate(
self,
text_list: list,
instruction: str = None, # Kept for backward compatibility but not used
**kwargs,
) -> str:
"""
infer_aggregate - infers a consolidated summary from a list of texts.
Args:
text_list (list): The texts to summarize.
instruction (str): Not used by this model, kept for compatibility.
**kwargs: Additional parameters to update in the generation configuration.
Returns:
The generated summary.
"""
joined_text = "\n\n".join(text_list)
if kwargs:
self.update_generation_config(**kwargs)
st = time.perf_counter()
self.logger.info(f"inference on {len(text_list)} texts ...")
result = self.aggregator(
joined_text,
generation_config=self.aggregator.model.generation_config,
)[0]["generated_text"]
self.logger.info(f"Done. runtime:\t{round(time.perf_counter() - st, 2)}s")
self.logger.info(
f"Input tokens:\t{self.count_tokens(joined_text)}. Output tokens:\t{self.count_tokens(result)}"
)
self.logger.debug(f"Generated text:\n{result}")
return result
def count_tokens(self, text: str) -> int:
"""count the number of tokens in a text"""
return (
len(self.aggregator.tokenizer.encode(text, truncation=False, padding=False))
if text
else 0
)
|