File size: 13,867 Bytes
98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e bc15897 98cfe0e db31aa3 98cfe0e bc15897 98cfe0e bc15897 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 98cfe0e 504dcc1 bc15897 f2826ce bc15897 f2826ce bc15897 98cfe0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Import necessary libraries
import os
import joblib
import pandas as pd
import re
import nltk
import streamlit as st
import numpy as np
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from bs4 import BeautifulSoup
import plotly.express as px
# Download NLTK resources
nltk.download('wordnet')
nltk.download('stopwords')
# Define file paths
MODEL_PATH = 'model/passmodel.pkl'
TOKENIZER_PATH = 'model/tfidfvectorizer.pkl'
DATA_PATH = 'data/custom_dataset.csv'
# Load vectorizer and model
vectorizer = joblib.load(TOKENIZER_PATH)
model = joblib.load(MODEL_PATH)
# Initialize NLTK tools
stop = stopwords.words('english')
lemmatizer = WordNetLemmatizer()
# Configure Streamlit page
st.set_page_config(
page_title='DPDR',
page_icon='π¨ββοΈ',
layout='wide'
)
# Custom CSS for styling
st.markdown("""
<style>
/* Predict button styling */
.stButton button {
background-color: #89b4fa; /* Blue */
color: #1e1e2e; /* Base (dark text) */
font-size: 18px;
padding: 10px 24px;
border-radius: 8px;
border: none;
transition: background-color 0.3s ease;
}
.stButton button:hover {
background-color: #000000; /* Dark Black */
color: #ffffff; /* White text for contrast */
}
.stButton button:active {
background-color: #89dceb; /* Sky */
}
/* Condition Predicted styling */
.condition-card {
padding: 20px;
border-radius: 10px;
background-color: #FFA500; /* Vibrant Orange */
color: #1e1e2e; /* Base (dark text) */
margin: 10px 0;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2);
font-weight: bold; /* Make text bold for emphasis */
}
/* Top Recommended Drugs styling */
.drug-card-1 {
padding: 15px;
border-radius: 8px;
background-color: #b4befe; /* Lavender */
color: #1e1e2e; /* Base (dark text) */
margin: 10px 0;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.1);
}
.drug-card-2 {
padding: 15px;
border-radius: 8px;
background-color: #a6e3a1; /* Green */
color: #1e1e2e; /* Base (dark text) */
margin: 10px 0;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.1);
}
.drug-card-3 {
padding: 15px;
border-radius: 8px;
background-color: #f38ba8; /* Red */
color: #1e1e2e; /* Base (dark text) */
margin: 10px 0;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.1);
}
.drug-card-4 {
padding: 15px;
border-radius: 8px;
background-color: #f2cdcd; /* Flamingo */
color: #1e1e2e; /* Base (dark text) */
margin: 10px 0;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
# Title and header
st.title("π An Intelligent System for Disease Prediction and Drug Recommendation π")
st.markdown("---")
# Sidebar for additional options
with st.sidebar:
st.header("βοΈ Settings")
st.markdown("Configure the model and data paths here.")
MODEL_PATH = st.text_input("Model Path", value='model/passmodel.pkl')
TOKENIZER_PATH = st.text_input("Tokenizer Path", value='model/tfidfvectorizer.pkl')
DATA_PATH = st.text_input("Data Path", value='data/custom_dataset.csv')
# Predefined list of symptoms
symptoms = ["Acne", "Anxiety", "Depression", "High blood pressure", "Diabetes", "Migraine",
"Cough", "Wheezing", "Shortness of breath", "Fever", "Fatigue", "Frequent urination",
"Painful urination", "Chest pain", "Headache", "Nausea", "Dizziness", "Skin rash",
"Insomnia", "Difficulty concentrating", "Hyperactivity", "Irritability", "Weight gain",
"Weight loss", "Blurred vision", "Increased thirst", "Increased hunger", "Joint pain",
"Swelling", "Stress", "Mood swings", "Back pain", "Abdominal pain", "Irregular menstruation",
"Heavy menstrual bleeding", "Missed periods", "Breast tenderness", "Nausea after eating",
"Heart palpitations", "Cold sweats", "Night sweats", "Dry mouth", "Frequent infections",
"Slow healing wounds", "Tingling in hands or feet", "Numbness in extremities", "Loss of appetite",
"Excessive sweating", "Rapid heartbeat", "Chest tightness", "Nasal congestion", "Sinus pressure",
"Sore throat", "Runny nose", "Chills", "Muscle aches", "Confusion", "Memory problems",
"Low energy", "Feeling hopeless", "Loss of interest in activities", "Suicidal thoughts",
"Restlessness", "Aggression", "Impulsivity", "Poor coordination", "Frequent urination at night",
"Blood in urine", "Cloudy urine", "Pelvic pain", "Lower back pain", "Burning sensation during urination",
"Foul-smelling urine", "Itching or irritation in the genital area", "Redness or swelling in the genital area",
"White patches on the skin", "Blackheads", "Whiteheads", "Oily skin", "Dry skin", "Skin discoloration",
"Flaky skin", "Sensitivity to light", "Sensitivity to sound", "Aura (visual disturbances)", "Neck pain",
"Stiff neck", "Sensitivity to smells", "Loss of balance", "Ringing in the ears", "Frequent yawning",
"Excessive thirst at night", "Frequent nighttime urination", "Dark patches on the skin", "Frequent headaches",
"Eye pain", "Blurry vision", "Double vision", "Eye redness", "Eye swelling", "Eye discharge", "Ear pain",
"Ear discharge", "Hearing loss", "Tinnitus", "Jaw pain", "Tooth sensitivity", "Gum bleeding", "Bad breath",
"Swollen lymph nodes", "Hoarseness", "Difficulty swallowing", "Chronic cough", "Blood in sputum",
"Rapid breathing", "Shallow breathing", "Chest congestion", "Phlegm production", "Nasal discharge",
"Postnasal drip", "Facial pain", "Facial swelling", "Tenderness in the face", "Toothache", "Jaw stiffness",
"Difficulty opening the mouth", "Difficulty chewing", "Difficulty speaking", "Difficulty breathing through the nose",
"Loss of taste", "Loss of smell", "Metallic taste in the mouth", "Dry eyes", "Watery eyes", "Itchy eyes",
"Itchy skin", "Hives", "Swollen joints", "Stiff joints", "Redness in joints", "Warmth in joints",
"Difficulty moving joints", "Cracking or popping in joints", "Weakness in muscles", "Muscle cramps",
"Muscle spasms", "Tremors", "Seizures", "Fainting", "Lightheadedness", "Pale skin", "Yellowing of the skin",
"Bruising easily", "Slow heart rate", "High heart rate", "Irregular heartbeat", "Low blood pressure",
"High blood sugar", "Low blood sugar", "Excessive hunger", "Excessive thirst", "Frequent infections in the urinary tract",
"Frequent infections in the respiratory tract", "Frequent infections in the skin", "Frequent infections in the ears",
"Frequent infections in the eyes", "Frequent infections in the mouth", "Frequent infections in the throat",
"Frequent infections in the sinuses", "Frequent infections in the lungs", "Frequent infections in the digestive system",
"Frequent infections in the reproductive system", "Frequent infections in the urinary system",
"Frequent infections in the nervous system", "Frequent infections in the circulatory system",
"Frequent infections in the immune system"]
# Input section with multiselect for symptoms
st.header("π Enter Patient Symptoms")
# Radio button to choose input method
input_method = st.radio(
"Choose how you want to enter symptoms:",
options=["Select from predefined list", "Type your own text"],
index=0 # Default to the first option
)
# Initialize raw_text
raw_text = ""
# Option 1: Select from predefined list
if input_method == "Select from predefined list":
selected_symptoms = st.multiselect("Choose the symptoms:", symptoms)
raw_text = ", ".join(selected_symptoms)
# Option 2: Type your own text
elif input_method == "Type your own text":
raw_text = st.text_area("Describe the patient's symptoms or condition here:", height=100)
# Display the final input text (for debugging or confirmation)
st.markdown(f"**Input Text:** {raw_text}")
# Function to clean and preprocess text
def clean_text(raw_review):
# 1. Remove HTML tags
review_text = BeautifulSoup(raw_review, 'html.parser').get_text()
# 2. Keep only letters and replace non-alphabetic characters with spaces
letters_only = re.sub('[^a-zA-Z]', ' ', review_text)
# 3. Convert to lowercase and split into words
words = letters_only.lower().split()
# 4. Remove stopwords
meaningful_words = [w for w in words if w not in stop]
# 5. Lemmatize words
lemmatized_words = [lemmatizer.lemmatize(w) for w in meaningful_words]
# 6. Join words back into a single string
return ' '.join(lemmatized_words)
# Function to extract top recommended drugs
def top_drugs_extractor(condition, df):
# Filter and sort drugs based on rating and usefulness
df_top = df[(df['rating'] >= 9) & (df['usefulCount'] >= 90)].sort_values(
by=['rating', 'usefulCount'], ascending=[False, False]
)
# Extract top 4 unique drugs for the condition
drug_lst = df_top[df_top['condition'] == condition]['drugName'].head(4).tolist()
drug_lst = list(set(drug_lst))
return drug_lst
# Function to predict condition and recommend drugs
def predict(raw_text):
global predicted_cond, top_drugs
if raw_text != "":
# Clean and preprocess input text
clean_text_result = clean_text(raw_text)
clean_lst = [clean_text_result]
# Transform text using the vectorizer
tfidf_vect = vectorizer.transform(clean_lst)
# Predict condition
prediction = model.predict(tfidf_vect)
predicted_cond = prediction[0]
# Load data and extract top drugs
df = pd.read_csv(DATA_PATH)
top_drugs = top_drugs_extractor(predicted_cond, df)
# Predict button
predict_button = st.button("π Predict")
# Display results when the button is clicked
if predict_button:
# Check if input is empty
if not raw_text.strip():
st.warning("β οΈ Please enter symptoms or select from the predefined list before predicting.")
else:
with st.spinner("π§ Analyzing the condition and generating recommendations..."):
predict(raw_text)
st.markdown("---")
st.markdown("### π― Condition Predicted")
st.markdown(f"<div class='condition-card'><h3>{predicted_cond}</h3></div>", unsafe_allow_html=True)
st.markdown("---")
st.markdown("### π Top Recommended Drugs")
# Check if recommended drugs are less than 4
if len(top_drugs) < 4:
st.warning(f"β οΈ Only {len(top_drugs)} recommended drugs are available for this condition.")
# Display recommended drugs
for i, drug in enumerate(top_drugs):
if i == 0:
st.markdown(f"<div class='drug-card-1'><h4>{i + 1}. {drug}</h4></div>", unsafe_allow_html=True)
elif i == 1:
st.markdown(f"<div class='drug-card-2'><h4>{i + 1}. {drug}</h4></div>", unsafe_allow_html=True)
elif i == 2:
st.markdown(f"<div class='drug-card-3'><h4>{i + 1}. {drug}</h4></div>", unsafe_allow_html=True)
elif i == 3:
st.markdown(f"<div class='drug-card-4'><h4>{i + 1}. {drug}</h4></div>", unsafe_allow_html=True)
# Visualize top drugs using a bar chart with matching colors
st.markdown("---")
st.markdown("### π Drug Recommendations Visualization")
df_drugs = pd.DataFrame({"Drug": top_drugs, "Rank": range(len(top_drugs), 0, -1)}) # Reverse ranks
color_map = {}
if len(top_drugs) >= 1:
color_map[top_drugs[0]] = "#b4befe" # Lavender
if len(top_drugs) >= 2:
color_map[top_drugs[1]] = "#a6e3a1" # Green
if len(top_drugs) >= 3:
color_map[top_drugs[2]] = "#f38ba8" # Red
if len(top_drugs) >= 4:
color_map[top_drugs[3]] = "#f2cdcd" # Flamingo
fig = px.bar(df_drugs, x="Rank", y="Drug", title="Top Recommended Drugs",
labels={"Drug": "Drug Name", "Rank": "Rank"},
orientation='h', # Horizontal bar chart
color="Drug", # Color by drug name
color_discrete_map=color_map) # Map colors to drugs
fig.update_layout(yaxis={'categoryorder':'total ascending'}) # Sort by rank
st.plotly_chart(fig, use_container_width=True)
# Warning and thank you message
st.markdown("---")
st.markdown("### β οΈπ§ **Disclaimer** π§β οΈ")
st.warning("""
**This is just a prototype and not a substitute for professional medical advice.**
The predictions and recommendations provided by this app are based on a machine learning model and may not always be accurate.
Always consult a qualified healthcare provider for medical diagnosis and treatment.
""")
st.markdown("---")
# Expandable section for additional information
with st.expander("βΉοΈ About This App"):
st.write("""
This app uses a machine learning model to predict diseases based on symptoms and recommends the top drugs for the predicted condition.
- **Symptoms**: Select from a predefined list of symptoms.
- **Prediction**: The model analyzes the symptoms and predicts the most likely condition.
- **Drug Recommendations**: Based on the predicted condition, the app recommends the top drugs with high ratings and usefulness.
""") |