File size: 7,173 Bytes
e15a1db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import streamlit as st
from PIL import Image 
import os
import anthropic
import base64
import numpy as np
from dotenv import load_dotenv
import cv2
import tempfile
import easyocr 
import pytesseract
load_dotenv() 


from yolo_functions import segment_large_image_with_tiles , usable_data , plot_differences_on_image1 , system_prompt_4 , blueprint_analyzer
from ultralytics import YOLO 
from openai import OpenAI
import os



client = anthropic.Anthropic(
    # api_key="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",
    api_key = os.getenv('ANTHROPIC_API_KEY')
)

openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) 


def encode_image(image_path):
    # with open(image_path, "rb") as image_file:
        # return base64.b64encode(image_file.read()).decode("utf-8")
    return base64.b64encode(image_path.getvalue()).decode("utf-8")

def chat_claude(prompt , image1 , image2 ) :
    # print("image 1"  , image1)
    image1_data = encode_image(image1) 
    # print("image 1 data" , image1_data)
    image2_data = encode_image(image2) 
    message = client.messages.create(
        model="claude-3-opus-20240229",
        max_tokens = 4096,
        temperature=0,
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Image 1:"
                    },
                    {
                        "type": "image",
                        "source": {
                            "type": "base64",
                            "media_type": "image/jpeg",
                            "data": image1_data,
                        },
                    },
                    {
                        "type": "text",
                        "text": "Image 2:"
                    },
                    {
                        "type": "image",
                        "source": {
                            "type": "base64",
                            "media_type": "image/jpeg",
                            "data": image2_data,
                        },
                    },
                    {
                        "type": "text",
                        "text": f"{prompt}"
                    }
                ],
            }
        ],
    )
    return message.content[0].text


prompt = """Given 2 construction blueprints your task is to analyze carefully both blueprints and point out difference for following categories -
1. Strcutural grid.
2. Layout Areas - rooms , balcony , porch , staircase , elevator etc.
3. Interior changes or optimization.
Summarize all the difference in paragraph concisely.
"""
st.set_page_config(layout = "wide")
uploaded_files = st.file_uploader("Upload 2 image to compare", accept_multiple_files=True)
# import pdb; pdb.set_trace()
# print("upladed file length" , len(uploaded_files))
if len(uploaded_files) !=0  :
    temp_dir = tempfile.TemporaryDirectory() 
    # print(temp_dir)
    i = 0
    for one_file in uploaded_files :
        if i == 0 :
            img1 = Image.open(one_file)  
            sv_path_1 = temp_dir.name + "/img1.jpg"  
            img1.save(sv_path_1) 
            # print("uploaded file" , one_file)
            # print("img1" , img1)

            tmp_img1 = one_file  
            # print("tmp_img1" , tmp_img1)  
            st.image(img1)
            i = i + 1
        if i == 1 :
            img2 = Image.open(one_file) 
            sv_path_2 = temp_dir.name + "/img2.jpg"  
            img2.save(sv_path_2) 
            tmp_img2 = one_file     
            st.image(img2)
            i = i + 1

    col1 , col2 = st.columns(2)
    col1.header("LLM")
    col2.header("Seg-LLM !")
    # import pdb; pdb.set_trace()
    llm_ans = chat_claude(prompt , tmp_img1 , tmp_img2)
    print(llm_ans)
    col1.write(llm_ans)
    #################### yolo segment from here ################
    model = YOLO("best.pt") 

    final_output_1, class_mask_dict_1 = segment_large_image_with_tiles(
    model,
    # large_image_path=img_1_path,
    # large_image_path= tmp_img1 ,
    large_image_path= sv_path_1 ,
    tile_size=1080,
    overlap=120,
    alpha=0.4,
    display=True
    )
    final_output_2, class_mask_dict_2= segment_large_image_with_tiles(
    model,
    large_image_path=sv_path_2,
    tile_size=1080,
    alpha=0.4,
    display=True
    )
    label_dict = {0: 'EMP', 1: 'balcony_area', 2: 'bathroom', 3: 'brick_wall', 4: 'concrete_wall', 5: 'corridor', 6: 'dining_area', 7: 'door', 8: 'double_window', 9: 'dressing_room', 10: 'elevator', 11: 'elevator_hall', 12: 'emergency_exit', 13: 'empty_area', 14: 'lobby', 15: 'pantry', 16: 'porch', 17: 'primary_insulation', 18: 'rooms', 19: 'single_window', 20: 'stairs', 21: 'thin_wall'}
    img1_results = {}
    for key in class_mask_dict_1.keys():
        img1_results[label_dict[key]] = class_mask_dict_1[key]
    img2_results = {}
    for key in class_mask_dict_2.keys():
        img2_results[label_dict[key]] = class_mask_dict_2[key]
    image_1 , image_2 = img1 , img2 
    width, height = image_1.width, image_1.height 
    image_1_data = usable_data(img1_results, image_1) 
    image_2_data = usable_data(img2_results, image_2) 

    lines_1, text_data_1 = blueprint_analyzer(sv_path_1)
    lines_2, text_data_2 = blueprint_analyzer(sv_path_2)

    user_prompt_3 = f"""I have two construction blueprint images, Image 1 and Image 2, and here are their segmentation results (with bounding boxes, centers, and areas). Please compare them and provide a short Markdown summary of the differences, ignoring any objects that match in both images:

        Image 1:
        image: {image_1}
        segmentation results: {image_1_data}
        grid lines: {lines_1}
        ocr results: {text_data_1}
        Image 2:
        image: {image_2}
        segmentation results: {image_2_data}
        grid lines: {lines_2}
        ocr results: {text_data_2}

        Please:
        Compare the two images only in terms of differences—ignore any objects that match (same label and near-identical center).
        For objects missing in Image 2 (but present in Image 1), or newly added in Image 2, indicate their relative position using known areas or approximate directions. For instance, mention if the missing doors were “towards the north side, near the elevator,” or if new walls appeared “in the southeastern corner, near the balcony.”
        Summarize any changes in labels or text, again without giving raw bounding box or polygon coordinate data.
        Provide your final output in a short, clear Markdown summary that describes where objects have changed.
        Mention if there are text/label changes (e.g., from an OCR perspective) in any particular area or region
    """



    

    completion = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": system_prompt_4},
            {
                "role": "user",
                "content": user_prompt_3
            }

        ]
    )

    print(completion.choices[0].message.content)