Spaces:
Sleeping
Sleeping
File size: 7,173 Bytes
e15a1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import streamlit as st
from PIL import Image
import os
import anthropic
import base64
import numpy as np
from dotenv import load_dotenv
import cv2
import tempfile
import easyocr
import pytesseract
load_dotenv()
from yolo_functions import segment_large_image_with_tiles , usable_data , plot_differences_on_image1 , system_prompt_4 , blueprint_analyzer
from ultralytics import YOLO
from openai import OpenAI
import os
client = anthropic.Anthropic(
# api_key="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",
api_key = os.getenv('ANTHROPIC_API_KEY')
)
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
def encode_image(image_path):
# with open(image_path, "rb") as image_file:
# return base64.b64encode(image_file.read()).decode("utf-8")
return base64.b64encode(image_path.getvalue()).decode("utf-8")
def chat_claude(prompt , image1 , image2 ) :
# print("image 1" , image1)
image1_data = encode_image(image1)
# print("image 1 data" , image1_data)
image2_data = encode_image(image2)
message = client.messages.create(
model="claude-3-opus-20240229",
max_tokens = 4096,
temperature=0,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Image 1:"
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image1_data,
},
},
{
"type": "text",
"text": "Image 2:"
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image2_data,
},
},
{
"type": "text",
"text": f"{prompt}"
}
],
}
],
)
return message.content[0].text
prompt = """Given 2 construction blueprints your task is to analyze carefully both blueprints and point out difference for following categories -
1. Strcutural grid.
2. Layout Areas - rooms , balcony , porch , staircase , elevator etc.
3. Interior changes or optimization.
Summarize all the difference in paragraph concisely.
"""
st.set_page_config(layout = "wide")
uploaded_files = st.file_uploader("Upload 2 image to compare", accept_multiple_files=True)
# import pdb; pdb.set_trace()
# print("upladed file length" , len(uploaded_files))
if len(uploaded_files) !=0 :
temp_dir = tempfile.TemporaryDirectory()
# print(temp_dir)
i = 0
for one_file in uploaded_files :
if i == 0 :
img1 = Image.open(one_file)
sv_path_1 = temp_dir.name + "/img1.jpg"
img1.save(sv_path_1)
# print("uploaded file" , one_file)
# print("img1" , img1)
tmp_img1 = one_file
# print("tmp_img1" , tmp_img1)
st.image(img1)
i = i + 1
if i == 1 :
img2 = Image.open(one_file)
sv_path_2 = temp_dir.name + "/img2.jpg"
img2.save(sv_path_2)
tmp_img2 = one_file
st.image(img2)
i = i + 1
col1 , col2 = st.columns(2)
col1.header("LLM")
col2.header("Seg-LLM !")
# import pdb; pdb.set_trace()
llm_ans = chat_claude(prompt , tmp_img1 , tmp_img2)
print(llm_ans)
col1.write(llm_ans)
#################### yolo segment from here ################
model = YOLO("best.pt")
final_output_1, class_mask_dict_1 = segment_large_image_with_tiles(
model,
# large_image_path=img_1_path,
# large_image_path= tmp_img1 ,
large_image_path= sv_path_1 ,
tile_size=1080,
overlap=120,
alpha=0.4,
display=True
)
final_output_2, class_mask_dict_2= segment_large_image_with_tiles(
model,
large_image_path=sv_path_2,
tile_size=1080,
alpha=0.4,
display=True
)
label_dict = {0: 'EMP', 1: 'balcony_area', 2: 'bathroom', 3: 'brick_wall', 4: 'concrete_wall', 5: 'corridor', 6: 'dining_area', 7: 'door', 8: 'double_window', 9: 'dressing_room', 10: 'elevator', 11: 'elevator_hall', 12: 'emergency_exit', 13: 'empty_area', 14: 'lobby', 15: 'pantry', 16: 'porch', 17: 'primary_insulation', 18: 'rooms', 19: 'single_window', 20: 'stairs', 21: 'thin_wall'}
img1_results = {}
for key in class_mask_dict_1.keys():
img1_results[label_dict[key]] = class_mask_dict_1[key]
img2_results = {}
for key in class_mask_dict_2.keys():
img2_results[label_dict[key]] = class_mask_dict_2[key]
image_1 , image_2 = img1 , img2
width, height = image_1.width, image_1.height
image_1_data = usable_data(img1_results, image_1)
image_2_data = usable_data(img2_results, image_2)
lines_1, text_data_1 = blueprint_analyzer(sv_path_1)
lines_2, text_data_2 = blueprint_analyzer(sv_path_2)
user_prompt_3 = f"""I have two construction blueprint images, Image 1 and Image 2, and here are their segmentation results (with bounding boxes, centers, and areas). Please compare them and provide a short Markdown summary of the differences, ignoring any objects that match in both images:
Image 1:
image: {image_1}
segmentation results: {image_1_data}
grid lines: {lines_1}
ocr results: {text_data_1}
Image 2:
image: {image_2}
segmentation results: {image_2_data}
grid lines: {lines_2}
ocr results: {text_data_2}
Please:
Compare the two images only in terms of differences—ignore any objects that match (same label and near-identical center).
For objects missing in Image 2 (but present in Image 1), or newly added in Image 2, indicate their relative position using known areas or approximate directions. For instance, mention if the missing doors were “towards the north side, near the elevator,” or if new walls appeared “in the southeastern corner, near the balcony.”
Summarize any changes in labels or text, again without giving raw bounding box or polygon coordinate data.
Provide your final output in a short, clear Markdown summary that describes where objects have changed.
Mention if there are text/label changes (e.g., from an OCR perspective) in any particular area or region
"""
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_prompt_4},
{
"role": "user",
"content": user_prompt_3
}
]
)
print(completion.choices[0].message.content)
|