File size: 3,178 Bytes
c0e81fb
1dea712
c0e81fb
 
 
 
1367fa8
 
 
c0e81fb
145f26c
c0e81fb
 
 
4e33c9b
 
1367fa8
 
 
 
 
 
 
1dea712
1367fa8
1dea712
2d08044
c0e81fb
 
4e33c9b
c0e81fb
 
1dea712
1367fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e81fb
1367fa8
 
 
 
 
 
c0e81fb
1367fa8
 
c0e81fb
1367fa8
 
 
 
 
 
c0e81fb
1367fa8
 
 
 
c0e81fb
1367fa8
 
 
 
 
 
c0e81fb
1367fa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import pandas as pd
import streamlit as st
from datetime import datetime
from groq import Groq
from logic import LLMClient, CodeProcessor
from batch_code_logic_csv import csv_read_batch_code
import zipfile
import io

client = Groq(api_key=os.getenv("GROQ_API_KEY"))

st.title("Code Analysis with LLMs")

st.sidebar.title("Input Options")

code_input_method = st.sidebar.radio("How would you like to provide your code?",
                                     ("Upload CSV file", "Upload Code File"))

code_dict = {}

if code_input_method == "Upload CSV file":
    uploaded_file = st.sidebar.file_uploader("Upload your CSV/Excel file", type=["csv", "xlsx"])

    if uploaded_file is not None:
        dataframe = pd.read_csv(uploaded_file)
        code_dict = csv_read_batch_code(dataframe)

elif code_input_method == "Upload Code File":
    uploaded_file = st.sidebar.file_uploader("Upload your code file", type=["py", "txt"])
    if uploaded_file is not None:
        code_text = uploaded_file.read().decode("utf-8")
        code_dict = {"single_code": code_text}

model_choice = st.sidebar.selectbox("Select LLM Model",
                                    ["llama-3.2-90b-text-preview", "llama-3.2-90b-text-preview", "llama3-8b-8192"])

if code_dict:
    unique_key = st.sidebar.selectbox("Select a Key for Analysis", list(code_dict.keys()))

    if st.sidebar.button("Analyze Code") and unique_key:
        llm_obj = LLMClient(client)
        processor = CodeProcessor(llm_obj)

        code_text = code_dict[unique_key]
        markdown_output = processor.process_code(code_text, model_choice)

        with st.expander(f"Analysis for {unique_key}"):
            st.markdown(markdown_output)

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        st.download_button(
            label=f"Download {unique_key} Result as Markdown",
            data=markdown_output,
            file_name=f"code_analysis_{unique_key}_{timestamp}.md",
            mime="text/markdown"
        )

    if st.sidebar.button("Batch Predict"):
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        all_markdowns = {}
        for key, code_text in code_dict.items():
            markdown_output = processor.process_code(code_text, model_choice)
            all_markdowns[key] = markdown_output

            with st.expander(f"Analysis for {key}"):
                st.markdown(markdown_output)

            st.download_button(
                label=f"Download {key} Result as Markdown",
                data=markdown_output,
                file_name=f"code_analysis_{key}_{timestamp}.md",
                mime="text/markdown"
            )

        zip_buffer = io.BytesIO()
        with zipfile.ZipFile(zip_buffer, "w") as zip_file:
            for key, markdown_output in all_markdowns.items():
                zip_file.writestr(f"code_analysis_{key}_{timestamp}.md", markdown_output)

        st.download_button(
            label="Download All as Zip",
            data=zip_buffer.getvalue(),
            file_name=f"code_analysis_batch_{timestamp}.zip",
            mime="application/zip"
        )
else:
    st.write("Please upload your file to analyze.")