Spaces:
Sleeping
Sleeping
File size: 3,178 Bytes
c0e81fb 1dea712 c0e81fb 1367fa8 c0e81fb 145f26c c0e81fb 4e33c9b 1367fa8 1dea712 1367fa8 1dea712 2d08044 c0e81fb 4e33c9b c0e81fb 1dea712 1367fa8 c0e81fb 1367fa8 c0e81fb 1367fa8 c0e81fb 1367fa8 c0e81fb 1367fa8 c0e81fb 1367fa8 c0e81fb 1367fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import os
import pandas as pd
import streamlit as st
from datetime import datetime
from groq import Groq
from logic import LLMClient, CodeProcessor
from batch_code_logic_csv import csv_read_batch_code
import zipfile
import io
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
st.title("Code Analysis with LLMs")
st.sidebar.title("Input Options")
code_input_method = st.sidebar.radio("How would you like to provide your code?",
("Upload CSV file", "Upload Code File"))
code_dict = {}
if code_input_method == "Upload CSV file":
uploaded_file = st.sidebar.file_uploader("Upload your CSV/Excel file", type=["csv", "xlsx"])
if uploaded_file is not None:
dataframe = pd.read_csv(uploaded_file)
code_dict = csv_read_batch_code(dataframe)
elif code_input_method == "Upload Code File":
uploaded_file = st.sidebar.file_uploader("Upload your code file", type=["py", "txt"])
if uploaded_file is not None:
code_text = uploaded_file.read().decode("utf-8")
code_dict = {"single_code": code_text}
model_choice = st.sidebar.selectbox("Select LLM Model",
["llama-3.2-90b-text-preview", "llama-3.2-90b-text-preview", "llama3-8b-8192"])
if code_dict:
unique_key = st.sidebar.selectbox("Select a Key for Analysis", list(code_dict.keys()))
if st.sidebar.button("Analyze Code") and unique_key:
llm_obj = LLMClient(client)
processor = CodeProcessor(llm_obj)
code_text = code_dict[unique_key]
markdown_output = processor.process_code(code_text, model_choice)
with st.expander(f"Analysis for {unique_key}"):
st.markdown(markdown_output)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
st.download_button(
label=f"Download {unique_key} Result as Markdown",
data=markdown_output,
file_name=f"code_analysis_{unique_key}_{timestamp}.md",
mime="text/markdown"
)
if st.sidebar.button("Batch Predict"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
all_markdowns = {}
for key, code_text in code_dict.items():
markdown_output = processor.process_code(code_text, model_choice)
all_markdowns[key] = markdown_output
with st.expander(f"Analysis for {key}"):
st.markdown(markdown_output)
st.download_button(
label=f"Download {key} Result as Markdown",
data=markdown_output,
file_name=f"code_analysis_{key}_{timestamp}.md",
mime="text/markdown"
)
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w") as zip_file:
for key, markdown_output in all_markdowns.items():
zip_file.writestr(f"code_analysis_{key}_{timestamp}.md", markdown_output)
st.download_button(
label="Download All as Zip",
data=zip_buffer.getvalue(),
file_name=f"code_analysis_batch_{timestamp}.zip",
mime="application/zip"
)
else:
st.write("Please upload your file to analyze.")
|