Spaces:
Sleeping
Sleeping
gemini added
Browse files
.env
ADDED
File without changes
|
app.py
CHANGED
@@ -6,10 +6,16 @@ from groq import Groq
|
|
6 |
from logic import LLMClient, CodeProcessor
|
7 |
from batch_code_logic_csv import csv_read_batch_code
|
8 |
import zipfile
|
|
|
9 |
import io
|
|
|
|
|
|
|
10 |
|
11 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
12 |
-
|
|
|
|
|
13 |
processor = CodeProcessor(llm_obj)
|
14 |
|
15 |
st.title("Code Analysis with LLMs")
|
@@ -32,10 +38,17 @@ elif code_input_method == "Upload Code File":
|
|
32 |
uploaded_file = st.sidebar.file_uploader("Upload your code file", type=["py", "txt"])
|
33 |
if uploaded_file is not None:
|
34 |
code_text = uploaded_file.read().decode("utf-8")
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
model_choice = st.sidebar.selectbox("Select LLM Model",
|
38 |
-
["llama-3.2-90b-text-preview", "llama-3.2-90b-text-preview", "llama3-8b-8192"])
|
39 |
|
40 |
if code_dict:
|
41 |
unique_key = st.sidebar.selectbox("Select a Key for Analysis", list(code_dict.keys()))
|
|
|
6 |
from logic import LLMClient, CodeProcessor
|
7 |
from batch_code_logic_csv import csv_read_batch_code
|
8 |
import zipfile
|
9 |
+
from dotenv import load_dotenv
|
10 |
import io
|
11 |
+
import google.generativeai as genai
|
12 |
+
import re
|
13 |
+
|
14 |
|
15 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
16 |
+
|
17 |
+
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
|
18 |
+
llm_obj = LLMClient(client,GOOGLE_API_KEY)
|
19 |
processor = CodeProcessor(llm_obj)
|
20 |
|
21 |
st.title("Code Analysis with LLMs")
|
|
|
38 |
uploaded_file = st.sidebar.file_uploader("Upload your code file", type=["py", "txt"])
|
39 |
if uploaded_file is not None:
|
40 |
code_text = uploaded_file.read().decode("utf-8")
|
41 |
+
|
42 |
+
code_lines = [line.strip() for line in code_text.splitlines()]
|
43 |
+
code_lines = [re.sub(r"\s+", " ", line) for line in code_lines]
|
44 |
+
|
45 |
+
# Join the cleaned lines back if needed as a single string
|
46 |
+
clean_code_text = "\n".join(code_lines) # Combine lines into one string
|
47 |
+
|
48 |
+
code_dict = {"single_code": clean_code_text}
|
49 |
|
50 |
model_choice = st.sidebar.selectbox("Select LLM Model",
|
51 |
+
["llama-3.2-90b-text-preview", "llama-3.2-90b-text-preview", "llama3-8b-8192","llama-3.1-70b-versatile","gemma2-9b-it","gemini-pro"])
|
52 |
|
53 |
if code_dict:
|
54 |
unique_key = st.sidebar.selectbox("Select a Key for Analysis", list(code_dict.keys()))
|
logic.py
CHANGED
@@ -1,15 +1,23 @@
|
|
|
|
1 |
class LLMClient:
|
2 |
-
def __init__(self, api_client):
|
3 |
self.client = api_client
|
|
|
|
|
4 |
|
5 |
def chat_completion(self, messages, model="llama3-8b-8192"):
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class CodeProcessor:
|
|
|
1 |
+
import google.generativeai as genai
|
2 |
class LLMClient:
|
3 |
+
def __init__(self, api_client,google_api_key):
|
4 |
self.client = api_client
|
5 |
+
self.google_api_key = google_api_key # Google API key for Gemini
|
6 |
+
genai.configure(api_key=self.google_api_key)
|
7 |
|
8 |
def chat_completion(self, messages, model="llama3-8b-8192"):
|
9 |
+
if model == "gemini-pro":
|
10 |
+
gemini_model = genai.GenerativeModel('gemini-pro')
|
11 |
+
response = gemini_model.generate_content([messages[1]['content']])
|
12 |
+
return response.text # Return the Gemini result
|
13 |
+
else:
|
14 |
+
completion = self.client.chat.completions.create(
|
15 |
+
messages=messages,
|
16 |
+
model=model,
|
17 |
+
temperature=0.5,
|
18 |
+
stream=False,
|
19 |
+
)
|
20 |
+
return completion.choices[0].message.content
|
21 |
|
22 |
|
23 |
class CodeProcessor:
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
groq
|
2 |
streamlit
|
3 |
pandas
|
4 |
-
numpy
|
|
|
|
1 |
groq
|
2 |
streamlit
|
3 |
pandas
|
4 |
+
numpy
|
5 |
+
google-generativeai
|