import os import pandas as pd import streamlit as st from datetime import datetime from groq import Groq from logic import LLMClient, CodeProcessor from batch_code_logic_csv import csv_read_batch_code import zipfile import io import google.generativeai as genai import re client = Groq(api_key=os.getenv("GROQ_API_KEY")) GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') llm_obj = LLMClient(client,GOOGLE_API_KEY) processor = CodeProcessor(llm_obj) st.title("Code Analysis with LLMs") st.sidebar.title("Input Options") code_input_method = st.sidebar.radio("How would you like to provide your code?", ("Upload CSV file", "Upload Code File")) code_dict = {} if code_input_method == "Upload CSV file": uploaded_file = st.sidebar.file_uploader("Upload your CSV/Excel file", type=["csv", "xlsx"]) if uploaded_file is not None: dataframe = pd.read_csv(uploaded_file) code_dict = csv_read_batch_code(dataframe) elif code_input_method == "Upload Code File": uploaded_file = st.sidebar.file_uploader("Upload your code file", type=["py", "txt"]) if uploaded_file is not None: code_text = uploaded_file.read().decode("utf-8") code_lines = [line.strip() for line in code_text.splitlines()] code_lines = [re.sub(r"\s+", " ", line) for line in code_lines] # Join the cleaned lines back if needed as a single string clean_code_text = "\n".join(code_lines) # Combine lines into one string code_dict = {"single_code": clean_code_text} model_choice = st.sidebar.selectbox("Select LLM Model", ["llama-3.2-90b-text-preview", "llama-3.2-90b-text-preview", "llama3-8b-8192","llama-3.1-70b-versatile","gemma2-9b-it","gemini-pro"]) if code_dict: unique_key = st.sidebar.selectbox("Select a Key for Analysis", list(code_dict.keys())) if st.sidebar.button("Analyze Code") and unique_key: code_text = code_dict[unique_key] markdown_output = processor.process_code(code_text, model_choice) with st.expander(f"Analysis for {unique_key}"): st.markdown(markdown_output) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") st.download_button( label=f"Download {unique_key} Result as Markdown", data=markdown_output, file_name=f"code_analysis_{unique_key}_{timestamp}.md", mime="text/markdown" ) if st.sidebar.button("Batch Predict"): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") all_markdowns = {} for key, code_text in code_dict.items(): markdown_output = processor.process_code(code_text, model_choice) all_markdowns[key] = markdown_output with st.expander(f"Analysis for {key}"): st.markdown(markdown_output) st.download_button( label=f"Download {key} Result as Markdown", data=markdown_output, file_name=f"code_analysis_{key}_{timestamp}.md", mime="text/markdown" ) zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, "w") as zip_file: for key, markdown_output in all_markdowns.items(): zip_file.writestr(f"code_analysis_{key}_{timestamp}.md", markdown_output) st.download_button( label="Download All as Zip", data=zip_buffer.getvalue(), file_name=f"code_analysis_batch_{timestamp}.zip", mime="application/zip" ) else: st.write("Please upload your file to analyze.")