Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -19,9 +19,6 @@ import requests
|
|
19 |
import uvicorn
|
20 |
import re
|
21 |
from fastapi.staticfiles import StaticFiles
|
22 |
-
from langchain_core.runnables import RunnableConfig
|
23 |
-
from langchain_core.prompts import ChatPromptTemplate
|
24 |
-
from datetime import datetime
|
25 |
|
26 |
app = FastAPI()
|
27 |
|
@@ -43,15 +40,18 @@ class CodeExecutionResult:
|
|
43 |
API_URL = "https://pvanand-code-execution-files-v5.hf.space"
|
44 |
|
45 |
@tool
|
46 |
-
def execute_python(code: str):
|
47 |
"""Execute Python code in an IPython interactiveshell and return the output.
|
48 |
The returned artifacts (if present) are automatically rendered in the UI and visible to the user.
|
49 |
Args:
|
50 |
-
code:
|
51 |
-
|
52 |
Available Libraries:
|
53 |
# Use plotly as the default charting library
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
matplotlib
|
56 |
pandas
|
57 |
plotly
|
@@ -96,22 +96,10 @@ def execute_python(code: str):
|
|
96 |
# Configure the memory and model"
|
97 |
memory = MemorySaver()
|
98 |
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
|
99 |
-
prompt = ChatPromptTemplate.from_messages([
|
100 |
-
("system", f"You are a Data Visualization assistant.You have access to a jupyter client with access to internet for python code execution. Your taks is to assist users with your data analysis and visualization expertise. Today's date is {datetime.now().strftime('%Y-%m-%d')}. The current folder contains the following files: {{collection_files}}"),
|
101 |
-
("placeholder", "{messages}"),
|
102 |
-
])
|
103 |
|
104 |
def state_modifier(state) -> list[BaseMessage]:
|
105 |
-
collection_files = "None"
|
106 |
-
# Format the prompt with the current state
|
107 |
-
formatted_prompt = prompt.invoke({
|
108 |
-
"collection_files": collection_files,
|
109 |
-
"messages": state["messages"]
|
110 |
-
})
|
111 |
-
|
112 |
-
# Trim the messages
|
113 |
return trim_messages(
|
114 |
-
|
115 |
token_counter=len,
|
116 |
max_tokens=16000,
|
117 |
strategy="last",
|
@@ -162,28 +150,7 @@ async def chat(input_data: ChatInput):
|
|
162 |
yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}\n"
|
163 |
|
164 |
elif kind == "on_tool_end":
|
165 |
-
tool_output = event['data'].get('output', '').content
|
166 |
-
#print(type(tool_output))
|
167 |
-
#print(dir(tool_output))
|
168 |
-
#print the keys
|
169 |
-
pattern = r'data: (.*?)\ndata:'
|
170 |
-
match = re.search(pattern, tool_output)
|
171 |
-
print(tool_output)
|
172 |
-
|
173 |
-
if match:
|
174 |
-
tool_output_json = match.group(1).strip()
|
175 |
-
try:
|
176 |
-
tool_output = json.loads(tool_output_json)
|
177 |
-
if "artifacts" in tool_output:
|
178 |
-
for artifact in tool_output["artifacts"]:
|
179 |
-
artifact_content = requests.get(f"{API_URL}/artifact/{artifact['artifact_id']}").content
|
180 |
-
print(artifact_content)
|
181 |
-
tool_output["artifacts"][artifact["artifact_id"]] = artifact_content
|
182 |
-
except Exception as e:
|
183 |
-
print(e)
|
184 |
-
print("Error parsing tool output as json: ", tool_output)
|
185 |
-
else:
|
186 |
-
print("No match found in tool output")
|
187 |
yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output})}\n"
|
188 |
return EventSourceResponse(
|
189 |
generate(),
|
|
|
19 |
import uvicorn
|
20 |
import re
|
21 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
22 |
|
23 |
app = FastAPI()
|
24 |
|
|
|
40 |
API_URL = "https://pvanand-code-execution-files-v5.hf.space"
|
41 |
|
42 |
@tool
|
43 |
+
def execute_python(code: str) -> str:
|
44 |
"""Execute Python code in an IPython interactiveshell and return the output.
|
45 |
The returned artifacts (if present) are automatically rendered in the UI and visible to the user.
|
46 |
Args:
|
47 |
+
code: The Python code to execute
|
|
|
48 |
Available Libraries:
|
49 |
# Use plotly as the default charting library
|
50 |
+
# While using yfinance to pull stock data, Always clean the multiindex columns as this might cause issues in plotting plotly charts
|
51 |
+
# Remove the ticker level from columns if it exists
|
52 |
+
yf_data = yf.download(symbol, start=start_date, end=end_date)
|
53 |
+
if isinstance(yf_data.columns, pd.MultiIndex):
|
54 |
+
yf_data.columns = yf_data.columns.get_level_values(0)
|
55 |
matplotlib
|
56 |
pandas
|
57 |
plotly
|
|
|
96 |
# Configure the memory and model"
|
97 |
memory = MemorySaver()
|
98 |
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
|
|
|
|
|
|
|
|
|
99 |
|
100 |
def state_modifier(state) -> list[BaseMessage]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
return trim_messages(
|
102 |
+
state["messages"],
|
103 |
token_counter=len,
|
104 |
max_tokens=16000,
|
105 |
strategy="last",
|
|
|
150 |
yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}\n"
|
151 |
|
152 |
elif kind == "on_tool_end":
|
153 |
+
tool_output = event['data'].get('output', '').content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output})}\n"
|
155 |
return EventSourceResponse(
|
156 |
generate(),
|